\left\{ \begin{array} { l } { 7 a + 10 b + c + 149 = 0 } \\ { 7 a - 10 b + c + 149 = 0 } \\ { 10 a - 9 b + c + 181 = 0 } \end{array} \right.
Solve for a, b, c
a = -\frac{32}{3} = -10\frac{2}{3} \approx -10.666666667
b=0
c = -\frac{223}{3} = -74\frac{1}{3} \approx -74.333333333
Share
Copied to clipboard
c=-7a-10b-149
Solve 7a+10b+c+149=0 for c.
7a-10b-7a-10b-149+149=0 10a-9b-7a-10b-149+181=0
Substitute -7a-10b-149 for c in the second and third equation.
b=0 a=\frac{19}{3}b-\frac{32}{3}
Solve these equations for b and a respectively.
a=\frac{19}{3}\times 0-\frac{32}{3}
Substitute 0 for b in the equation a=\frac{19}{3}b-\frac{32}{3}.
a=-\frac{32}{3}
Calculate a from a=\frac{19}{3}\times 0-\frac{32}{3}.
c=-7\left(-\frac{32}{3}\right)-10\times 0-149
Substitute 0 for b and -\frac{32}{3} for a in the equation c=-7a-10b-149.
c=-\frac{223}{3}
Calculate c from c=-7\left(-\frac{32}{3}\right)-10\times 0-149.
a=-\frac{32}{3} b=0 c=-\frac{223}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}