\left\{ \begin{array} { l } { 7 - 3 s + 1 = 0 } \\ { 4 t - 5 s = - 17 } \end{array} \right.
Solve for s, t
t=-\frac{11}{12}\approx -0.916666667
s = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Share
Copied to clipboard
8-3s=0
Consider the first equation. Add 7 and 1 to get 8.
-3s=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
s=\frac{-8}{-3}
Divide both sides by -3.
s=\frac{8}{3}
Fraction \frac{-8}{-3} can be simplified to \frac{8}{3} by removing the negative sign from both the numerator and the denominator.
4t-5\times \frac{8}{3}=-17
Consider the second equation. Insert the known values of variables into the equation.
4t-\frac{40}{3}=-17
Multiply -5 and \frac{8}{3} to get -\frac{40}{3}.
4t=-17+\frac{40}{3}
Add \frac{40}{3} to both sides.
4t=-\frac{11}{3}
Add -17 and \frac{40}{3} to get -\frac{11}{3}.
t=\frac{-\frac{11}{3}}{4}
Divide both sides by 4.
t=\frac{-11}{3\times 4}
Express \frac{-\frac{11}{3}}{4} as a single fraction.
t=\frac{-11}{12}
Multiply 3 and 4 to get 12.
t=-\frac{11}{12}
Fraction \frac{-11}{12} can be rewritten as -\frac{11}{12} by extracting the negative sign.
s=\frac{8}{3} t=-\frac{11}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}