\left\{ \begin{array} { l } { 60 ( x + 0.1 ) + 30 ( y + 0.2 ) = 60 } \\ { 90 x + 60 y = 81 } \end{array} \right.
Solve for x, y
x=0.5
y=0.6
Graph
Share
Copied to clipboard
60\left(x+0.1\right)+30\left(y+0.2\right)=60,90x+60y=81
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60\left(x+0.1\right)+30\left(y+0.2\right)=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
60x+6+30\left(y+0.2\right)=60
Multiply 60 times x+0.1.
60x+6+30y+6=60
Multiply 30 times y+0.2.
60x+30y+12=60
Add 6 to 6.
60x+30y=48
Subtract 12 from both sides of the equation.
60x=-30y+48
Subtract 30y from both sides of the equation.
x=\frac{1}{60}\left(-30y+48\right)
Divide both sides by 60.
x=-\frac{1}{2}y+\frac{4}{5}
Multiply \frac{1}{60} times -30y+48.
90\left(-\frac{1}{2}y+\frac{4}{5}\right)+60y=81
Substitute -\frac{y}{2}+\frac{4}{5} for x in the other equation, 90x+60y=81.
-45y+72+60y=81
Multiply 90 times -\frac{y}{2}+\frac{4}{5}.
15y+72=81
Add -45y to 60y.
15y=9
Subtract 72 from both sides of the equation.
y=\frac{3}{5}
Divide both sides by 15.
x=-\frac{1}{2}\times \frac{3}{5}+\frac{4}{5}
Substitute \frac{3}{5} for y in x=-\frac{1}{2}y+\frac{4}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{3}{10}+\frac{4}{5}
Multiply -\frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Add \frac{4}{5} to -\frac{3}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2},y=\frac{3}{5}
The system is now solved.
60\left(x+0.1\right)+30\left(y+0.2\right)=60,90x+60y=81
Put the equations in standard form and then use matrices to solve the system of equations.
60\left(x+0.1\right)+30\left(y+0.2\right)=60
Simplify the first equation to put it in standard form.
60x+6+30\left(y+0.2\right)=60
Multiply 60 times x+0.1.
60x+6+30y+6=60
Multiply 30 times y+0.2.
60x+30y+12=60
Add 6 to 6.
60x+30y=48
Subtract 12 from both sides of the equation.
\left(\begin{matrix}60&30\\90&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\81\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&30\\90&60\end{matrix}\right))\left(\begin{matrix}60&30\\90&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\90&60\end{matrix}\right))\left(\begin{matrix}48\\81\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&30\\90&60\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\90&60\end{matrix}\right))\left(\begin{matrix}48\\81\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\90&60\end{matrix}\right))\left(\begin{matrix}48\\81\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{60\times 60-30\times 90}&-\frac{30}{60\times 60-30\times 90}\\-\frac{90}{60\times 60-30\times 90}&\frac{60}{60\times 60-30\times 90}\end{matrix}\right)\left(\begin{matrix}48\\81\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{1}{30}\\-\frac{1}{10}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}48\\81\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 48-\frac{1}{30}\times 81\\-\frac{1}{10}\times 48+\frac{1}{15}\times 81\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{3}{5}\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{2},y=\frac{3}{5}
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}