\left\{ \begin{array} { l } { 6.65 A + 2.705 = 806.10 } \\ { 7 A + S = 202 } \end{array} \right.
Solve for A, S
A = \frac{160679}{1330} = 120\frac{1079}{1330} \approx 120.811278195
S = -\frac{122299}{190} = -643\frac{129}{190} \approx -643.678947368
Quiz
\left\{ \begin{array} { l } { 6.65 A + 2.705 = 806.10 } \\ { 7 A + S = 202 } \end{array} \right.
Share
Copied to clipboard
6.65A=806.1-2.705
Consider the first equation. Subtract 2.705 from both sides.
6.65A=803.395
Subtract 2.705 from 806.1 to get 803.395.
A=\frac{803.395}{6.65}
Divide both sides by 6.65.
A=\frac{803395}{6650}
Expand \frac{803.395}{6.65} by multiplying both numerator and the denominator by 1000.
A=\frac{160679}{1330}
Reduce the fraction \frac{803395}{6650} to lowest terms by extracting and canceling out 5.
7\times \frac{160679}{1330}+S=202
Consider the second equation. Insert the known values of variables into the equation.
\frac{160679}{190}+S=202
Multiply 7 and \frac{160679}{1330} to get \frac{160679}{190}.
S=202-\frac{160679}{190}
Subtract \frac{160679}{190} from both sides.
S=-\frac{122299}{190}
Subtract \frac{160679}{190} from 202 to get -\frac{122299}{190}.
A=\frac{160679}{1330} S=-\frac{122299}{190}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}