\left\{ \begin{array} { l } { 6 z + y = 34 } \\ { 11 z - y = 34 } \end{array} \right.
Solve for z, y
y=10
z=4
Share
Copied to clipboard
6z+y=34,11z-y=34
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6z+y=34
Choose one of the equations and solve it for z by isolating z on the left hand side of the equal sign.
6z=-y+34
Subtract y from both sides of the equation.
z=\frac{1}{6}\left(-y+34\right)
Divide both sides by 6.
z=-\frac{1}{6}y+\frac{17}{3}
Multiply \frac{1}{6} times -y+34.
11\left(-\frac{1}{6}y+\frac{17}{3}\right)-y=34
Substitute -\frac{y}{6}+\frac{17}{3} for z in the other equation, 11z-y=34.
-\frac{11}{6}y+\frac{187}{3}-y=34
Multiply 11 times -\frac{y}{6}+\frac{17}{3}.
-\frac{17}{6}y+\frac{187}{3}=34
Add -\frac{11y}{6} to -y.
-\frac{17}{6}y=-\frac{85}{3}
Subtract \frac{187}{3} from both sides of the equation.
y=10
Divide both sides of the equation by -\frac{17}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
z=-\frac{1}{6}\times 10+\frac{17}{3}
Substitute 10 for y in z=-\frac{1}{6}y+\frac{17}{3}. Because the resulting equation contains only one variable, you can solve for z directly.
z=\frac{-5+17}{3}
Multiply -\frac{1}{6} times 10.
z=4
Add \frac{17}{3} to -\frac{5}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
z=4,y=10
The system is now solved.
6z+y=34,11z-y=34
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&1\\11&-1\end{matrix}\right)\left(\begin{matrix}z\\y\end{matrix}\right)=\left(\begin{matrix}34\\34\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&1\\11&-1\end{matrix}\right))\left(\begin{matrix}6&1\\11&-1\end{matrix}\right)\left(\begin{matrix}z\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\11&-1\end{matrix}\right))\left(\begin{matrix}34\\34\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&1\\11&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}z\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\11&-1\end{matrix}\right))\left(\begin{matrix}34\\34\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}z\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\11&-1\end{matrix}\right))\left(\begin{matrix}34\\34\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}z\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-11}&-\frac{1}{6\left(-1\right)-11}\\-\frac{11}{6\left(-1\right)-11}&\frac{6}{6\left(-1\right)-11}\end{matrix}\right)\left(\begin{matrix}34\\34\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}z\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{1}{17}\\\frac{11}{17}&-\frac{6}{17}\end{matrix}\right)\left(\begin{matrix}34\\34\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}z\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 34+\frac{1}{17}\times 34\\\frac{11}{17}\times 34-\frac{6}{17}\times 34\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}z\\y\end{matrix}\right)=\left(\begin{matrix}4\\10\end{matrix}\right)
Do the arithmetic.
z=4,y=10
Extract the matrix elements z and y.
6z+y=34,11z-y=34
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 6z+11y=11\times 34,6\times 11z+6\left(-1\right)y=6\times 34
To make 6z and 11z equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 6.
66z+11y=374,66z-6y=204
Simplify.
66z-66z+11y+6y=374-204
Subtract 66z-6y=204 from 66z+11y=374 by subtracting like terms on each side of the equal sign.
11y+6y=374-204
Add 66z to -66z. Terms 66z and -66z cancel out, leaving an equation with only one variable that can be solved.
17y=374-204
Add 11y to 6y.
17y=170
Add 374 to -204.
y=10
Divide both sides by 17.
11z-10=34
Substitute 10 for y in 11z-y=34. Because the resulting equation contains only one variable, you can solve for z directly.
11z=44
Add 10 to both sides of the equation.
z=4
Divide both sides by 11.
z=4,y=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}