\left\{ \begin{array} { l } { 6 x = 30 } \\ { 2 y + 2 x = 20 } \\ { 6 z + y = 1 } \end{array} \right.
Solve for x, y, z
x=5
y=5
z=-\frac{2}{3}\approx -0.666666667
Share
Copied to clipboard
x=\frac{30}{6}
Consider the first equation. Divide both sides by 6.
x=5
Divide 30 by 6 to get 5.
2y+2\times 5=20
Consider the second equation. Insert the known values of variables into the equation.
2y+10=20
Multiply 2 and 5 to get 10.
2y=20-10
Subtract 10 from both sides.
2y=10
Subtract 10 from 20 to get 10.
y=\frac{10}{2}
Divide both sides by 2.
y=5
Divide 10 by 2 to get 5.
6z+5=1
Consider the third equation. Insert the known values of variables into the equation.
6z=1-5
Subtract 5 from both sides.
6z=-4
Subtract 5 from 1 to get -4.
z=\frac{-4}{6}
Divide both sides by 6.
z=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
x=5 y=5 z=-\frac{2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}