\left\{ \begin{array} { l } { 6 x + 4 = - 9 } \\ { 2 x - 3 y = 7 } \end{array} \right.
Solve for x, y
x = -\frac{13}{6} = -2\frac{1}{6} \approx -2.166666667
y = -\frac{34}{9} = -3\frac{7}{9} \approx -3.777777778
Graph
Share
Copied to clipboard
6x=-9-4
Consider the first equation. Subtract 4 from both sides.
6x=-13
Subtract 4 from -9 to get -13.
x=-\frac{13}{6}
Divide both sides by 6.
2\left(-\frac{13}{6}\right)-3y=7
Consider the second equation. Insert the known values of variables into the equation.
-\frac{13}{3}-3y=7
Multiply 2 and -\frac{13}{6} to get -\frac{13}{3}.
-3y=7+\frac{13}{3}
Add \frac{13}{3} to both sides.
-3y=\frac{34}{3}
Add 7 and \frac{13}{3} to get \frac{34}{3}.
y=\frac{\frac{34}{3}}{-3}
Divide both sides by -3.
y=\frac{34}{3\left(-3\right)}
Express \frac{\frac{34}{3}}{-3} as a single fraction.
y=\frac{34}{-9}
Multiply 3 and -3 to get -9.
y=-\frac{34}{9}
Fraction \frac{34}{-9} can be rewritten as -\frac{34}{9} by extracting the negative sign.
x=-\frac{13}{6} y=-\frac{34}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}