Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+3y=660,40x+30y=5200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+3y=660
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-3y+660
Subtract 3y from both sides of the equation.
x=\frac{1}{6}\left(-3y+660\right)
Divide both sides by 6.
x=-\frac{1}{2}y+110
Multiply \frac{1}{6} times -3y+660.
40\left(-\frac{1}{2}y+110\right)+30y=5200
Substitute -\frac{y}{2}+110 for x in the other equation, 40x+30y=5200.
-20y+4400+30y=5200
Multiply 40 times -\frac{y}{2}+110.
10y+4400=5200
Add -20y to 30y.
10y=800
Subtract 4400 from both sides of the equation.
y=80
Divide both sides by 10.
x=-\frac{1}{2}\times 80+110
Substitute 80 for y in x=-\frac{1}{2}y+110. Because the resulting equation contains only one variable, you can solve for x directly.
x=-40+110
Multiply -\frac{1}{2} times 80.
x=70
Add 110 to -40.
x=70,y=80
The system is now solved.
6x+3y=660,40x+30y=5200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&3\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}660\\5200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&3\\40&30\end{matrix}\right))\left(\begin{matrix}6&3\\40&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\40&30\end{matrix}\right))\left(\begin{matrix}660\\5200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&3\\40&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\40&30\end{matrix}\right))\left(\begin{matrix}660\\5200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\40&30\end{matrix}\right))\left(\begin{matrix}660\\5200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{6\times 30-3\times 40}&-\frac{3}{6\times 30-3\times 40}\\-\frac{40}{6\times 30-3\times 40}&\frac{6}{6\times 30-3\times 40}\end{matrix}\right)\left(\begin{matrix}660\\5200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{20}\\-\frac{2}{3}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}660\\5200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 660-\frac{1}{20}\times 5200\\-\frac{2}{3}\times 660+\frac{1}{10}\times 5200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\80\end{matrix}\right)
Do the arithmetic.
x=70,y=80
Extract the matrix elements x and y.
6x+3y=660,40x+30y=5200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40\times 6x+40\times 3y=40\times 660,6\times 40x+6\times 30y=6\times 5200
To make 6x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 6.
240x+120y=26400,240x+180y=31200
Simplify.
240x-240x+120y-180y=26400-31200
Subtract 240x+180y=31200 from 240x+120y=26400 by subtracting like terms on each side of the equal sign.
120y-180y=26400-31200
Add 240x to -240x. Terms 240x and -240x cancel out, leaving an equation with only one variable that can be solved.
-60y=26400-31200
Add 120y to -180y.
-60y=-4800
Add 26400 to -31200.
y=80
Divide both sides by -60.
40x+30\times 80=5200
Substitute 80 for y in 40x+30y=5200. Because the resulting equation contains only one variable, you can solve for x directly.
40x+2400=5200
Multiply 30 times 80.
40x=2800
Subtract 2400 from both sides of the equation.
x=70
Divide both sides by 40.
x=70,y=80
The system is now solved.