\left\{ \begin{array} { l } { 6 x + 15 y = 360 } \\ { 8 x + 10 y = 440 } \end{array} \right.
Solve for x, y
x=50
y=4
Graph
Share
Copied to clipboard
6x+15y=360,8x+10y=440
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+15y=360
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-15y+360
Subtract 15y from both sides of the equation.
x=\frac{1}{6}\left(-15y+360\right)
Divide both sides by 6.
x=-\frac{5}{2}y+60
Multiply \frac{1}{6} times -15y+360.
8\left(-\frac{5}{2}y+60\right)+10y=440
Substitute -\frac{5y}{2}+60 for x in the other equation, 8x+10y=440.
-20y+480+10y=440
Multiply 8 times -\frac{5y}{2}+60.
-10y+480=440
Add -20y to 10y.
-10y=-40
Subtract 480 from both sides of the equation.
y=4
Divide both sides by -10.
x=-\frac{5}{2}\times 4+60
Substitute 4 for y in x=-\frac{5}{2}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=-10+60
Multiply -\frac{5}{2} times 4.
x=50
Add 60 to -10.
x=50,y=4
The system is now solved.
6x+15y=360,8x+10y=440
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}360\\440\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&15\\8&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{6\times 10-15\times 8}&-\frac{15}{6\times 10-15\times 8}\\-\frac{8}{6\times 10-15\times 8}&\frac{6}{6\times 10-15\times 8}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{4}\\\frac{2}{15}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 360+\frac{1}{4}\times 440\\\frac{2}{15}\times 360-\frac{1}{10}\times 440\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\4\end{matrix}\right)
Do the arithmetic.
x=50,y=4
Extract the matrix elements x and y.
6x+15y=360,8x+10y=440
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 6x+8\times 15y=8\times 360,6\times 8x+6\times 10y=6\times 440
To make 6x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 6.
48x+120y=2880,48x+60y=2640
Simplify.
48x-48x+120y-60y=2880-2640
Subtract 48x+60y=2640 from 48x+120y=2880 by subtracting like terms on each side of the equal sign.
120y-60y=2880-2640
Add 48x to -48x. Terms 48x and -48x cancel out, leaving an equation with only one variable that can be solved.
60y=2880-2640
Add 120y to -60y.
60y=240
Add 2880 to -2640.
y=4
Divide both sides by 60.
8x+10\times 4=440
Substitute 4 for y in 8x+10y=440. Because the resulting equation contains only one variable, you can solve for x directly.
8x+40=440
Multiply 10 times 4.
8x=400
Subtract 40 from both sides of the equation.
x=50
Divide both sides by 8.
x=50,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}