\left\{ \begin{array} { l } { 6 x + 10 y = 2800 } \\ { 20 x + 25 y = 8000 } \end{array} \right.
Solve for x, y
x=200
y=160
Graph
Share
Copied to clipboard
6x+10y=2800,20x+25y=8000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+10y=2800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-10y+2800
Subtract 10y from both sides of the equation.
x=\frac{1}{6}\left(-10y+2800\right)
Divide both sides by 6.
x=-\frac{5}{3}y+\frac{1400}{3}
Multiply \frac{1}{6} times -10y+2800.
20\left(-\frac{5}{3}y+\frac{1400}{3}\right)+25y=8000
Substitute \frac{-5y+1400}{3} for x in the other equation, 20x+25y=8000.
-\frac{100}{3}y+\frac{28000}{3}+25y=8000
Multiply 20 times \frac{-5y+1400}{3}.
-\frac{25}{3}y+\frac{28000}{3}=8000
Add -\frac{100y}{3} to 25y.
-\frac{25}{3}y=-\frac{4000}{3}
Subtract \frac{28000}{3} from both sides of the equation.
y=160
Divide both sides of the equation by -\frac{25}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{3}\times 160+\frac{1400}{3}
Substitute 160 for y in x=-\frac{5}{3}y+\frac{1400}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-800+1400}{3}
Multiply -\frac{5}{3} times 160.
x=200
Add \frac{1400}{3} to -\frac{800}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=200,y=160
The system is now solved.
6x+10y=2800,20x+25y=8000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&10\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2800\\8000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&10\\20&25\end{matrix}\right))\left(\begin{matrix}6&10\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&10\\20&25\end{matrix}\right))\left(\begin{matrix}2800\\8000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&10\\20&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&10\\20&25\end{matrix}\right))\left(\begin{matrix}2800\\8000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&10\\20&25\end{matrix}\right))\left(\begin{matrix}2800\\8000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{6\times 25-10\times 20}&-\frac{10}{6\times 25-10\times 20}\\-\frac{20}{6\times 25-10\times 20}&\frac{6}{6\times 25-10\times 20}\end{matrix}\right)\left(\begin{matrix}2800\\8000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}2800\\8000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 2800+\frac{1}{5}\times 8000\\\frac{2}{5}\times 2800-\frac{3}{25}\times 8000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\160\end{matrix}\right)
Do the arithmetic.
x=200,y=160
Extract the matrix elements x and y.
6x+10y=2800,20x+25y=8000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 6x+20\times 10y=20\times 2800,6\times 20x+6\times 25y=6\times 8000
To make 6x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 6.
120x+200y=56000,120x+150y=48000
Simplify.
120x-120x+200y-150y=56000-48000
Subtract 120x+150y=48000 from 120x+200y=56000 by subtracting like terms on each side of the equal sign.
200y-150y=56000-48000
Add 120x to -120x. Terms 120x and -120x cancel out, leaving an equation with only one variable that can be solved.
50y=56000-48000
Add 200y to -150y.
50y=8000
Add 56000 to -48000.
y=160
Divide both sides by 50.
20x+25\times 160=8000
Substitute 160 for y in 20x+25y=8000. Because the resulting equation contains only one variable, you can solve for x directly.
20x+4000=8000
Multiply 25 times 160.
20x=4000
Subtract 4000 from both sides of the equation.
x=200
Divide both sides by 20.
x=200,y=160
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}