\left\{ \begin{array} { l } { 6 a + 3 a - 3 b = 8 } \\ { 3 b + 3 b - 3 a = 6 d } \\ { d = a - b } \end{array} \right.
Solve for a, b, d
a = \frac{32}{27} = 1\frac{5}{27} \approx 1.185185185
b=\frac{8}{9}\approx 0.888888889
d=\frac{8}{27}\approx 0.296296296
Share
Copied to clipboard
d=a-b 3b+3b-3a=6d 6a+3a-3b=8
Reorder the equations.
3b+3b-3a=6\left(a-b\right)
Substitute a-b for d in the equation 3b+3b-3a=6d.
b=\frac{3}{4}a a=\frac{1}{3}b+\frac{8}{9}
Solve the second equation for b and the third equation for a.
a=\frac{1}{3}\times \frac{3}{4}a+\frac{8}{9}
Substitute \frac{3}{4}a for b in the equation a=\frac{1}{3}b+\frac{8}{9}.
a=\frac{32}{27}
Solve a=\frac{1}{3}\times \frac{3}{4}a+\frac{8}{9} for a.
b=\frac{3}{4}\times \frac{32}{27}
Substitute \frac{32}{27} for a in the equation b=\frac{3}{4}a.
b=\frac{8}{9}
Calculate b from b=\frac{3}{4}\times \frac{32}{27}.
d=\frac{32}{27}-\frac{8}{9}
Substitute \frac{8}{9} for b and \frac{32}{27} for a in the equation d=a-b.
d=\frac{8}{27}
Calculate d from d=\frac{32}{27}-\frac{8}{9}.
a=\frac{32}{27} b=\frac{8}{9} d=\frac{8}{27}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}