\left\{ \begin{array} { l } { 6 - 2 L + 4 \lambda = 0 } \\ { 20 - 4 K + 8 \lambda = 0 } \\ { 42 + 8 K - 88 = 0 } \end{array} \right.
Solve for L, λ, K
L = \frac{15}{4} = 3\frac{3}{4} = 3.75
\lambda =\frac{3}{8}=0.375
K = \frac{23}{4} = 5\frac{3}{4} = 5.75
Share
Copied to clipboard
-46+8K=0
Consider the third equation. Subtract 88 from 42 to get -46.
8K=46
Add 46 to both sides. Anything plus zero gives itself.
K=\frac{46}{8}
Divide both sides by 8.
K=\frac{23}{4}
Reduce the fraction \frac{46}{8} to lowest terms by extracting and canceling out 2.
20-4\times \frac{23}{4}+8\lambda =0
Consider the second equation. Insert the known values of variables into the equation.
20-23+8\lambda =0
Multiply -4 and \frac{23}{4} to get -23.
-3+8\lambda =0
Subtract 23 from 20 to get -3.
8\lambda =3
Add 3 to both sides. Anything plus zero gives itself.
\lambda =\frac{3}{8}
Divide both sides by 8.
6-2L+4\times \frac{3}{8}=0
Consider the first equation. Insert the known values of variables into the equation.
6-2L+\frac{3}{2}=0
Multiply 4 and \frac{3}{8} to get \frac{3}{2}.
\frac{15}{2}-2L=0
Add 6 and \frac{3}{2} to get \frac{15}{2}.
-2L=-\frac{15}{2}
Subtract \frac{15}{2} from both sides. Anything subtracted from zero gives its negation.
L=\frac{-\frac{15}{2}}{-2}
Divide both sides by -2.
L=\frac{-15}{2\left(-2\right)}
Express \frac{-\frac{15}{2}}{-2} as a single fraction.
L=\frac{-15}{-4}
Multiply 2 and -2 to get -4.
L=\frac{15}{4}
Fraction \frac{-15}{-4} can be simplified to \frac{15}{4} by removing the negative sign from both the numerator and the denominator.
L=\frac{15}{4} \lambda =\frac{3}{8} K=\frac{23}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}