Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

56x+64y=9.2,3x+2y=0.3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
56x+64y=9.2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
56x=-64y+9.2
Subtract 64y from both sides of the equation.
x=\frac{1}{56}\left(-64y+9.2\right)
Divide both sides by 56.
x=-\frac{8}{7}y+\frac{23}{140}
Multiply \frac{1}{56} times -64y+9.2.
3\left(-\frac{8}{7}y+\frac{23}{140}\right)+2y=0.3
Substitute -\frac{8y}{7}+\frac{23}{140} for x in the other equation, 3x+2y=0.3.
-\frac{24}{7}y+\frac{69}{140}+2y=0.3
Multiply 3 times -\frac{8y}{7}+\frac{23}{140}.
-\frac{10}{7}y+\frac{69}{140}=0.3
Add -\frac{24y}{7} to 2y.
-\frac{10}{7}y=-\frac{27}{140}
Subtract \frac{69}{140} from both sides of the equation.
y=\frac{27}{200}
Divide both sides of the equation by -\frac{10}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{8}{7}\times \frac{27}{200}+\frac{23}{140}
Substitute \frac{27}{200} for y in x=-\frac{8}{7}y+\frac{23}{140}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{27}{175}+\frac{23}{140}
Multiply -\frac{8}{7} times \frac{27}{200} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{100}
Add \frac{23}{140} to -\frac{27}{175} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{100},y=\frac{27}{200}
The system is now solved.
56x+64y=9.2,3x+2y=0.3
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}56&64\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}56&64\\3&2\end{matrix}\right))\left(\begin{matrix}56&64\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}56&64\\3&2\end{matrix}\right))\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}56&64\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}56&64\\3&2\end{matrix}\right))\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}56&64\\3&2\end{matrix}\right))\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{56\times 2-64\times 3}&-\frac{64}{56\times 2-64\times 3}\\-\frac{3}{56\times 2-64\times 3}&\frac{56}{56\times 2-64\times 3}\end{matrix}\right)\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{40}&\frac{4}{5}\\\frac{3}{80}&-\frac{7}{10}\end{matrix}\right)\left(\begin{matrix}9.2\\0.3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{40}\times 9.2+\frac{4}{5}\times 0.3\\\frac{3}{80}\times 9.2-\frac{7}{10}\times 0.3\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{100}\\\frac{27}{200}\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{100},y=\frac{27}{200}
Extract the matrix elements x and y.
56x+64y=9.2,3x+2y=0.3
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 56x+3\times 64y=3\times 9.2,56\times 3x+56\times 2y=56\times 0.3
To make 56x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 56.
168x+192y=27.6,168x+112y=16.8
Simplify.
168x-168x+192y-112y=\frac{138-84}{5}
Subtract 168x+112y=16.8 from 168x+192y=27.6 by subtracting like terms on each side of the equal sign.
192y-112y=\frac{138-84}{5}
Add 168x to -168x. Terms 168x and -168x cancel out, leaving an equation with only one variable that can be solved.
80y=\frac{138-84}{5}
Add 192y to -112y.
80y=10.8
Add 27.6 to -16.8 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{27}{200}
Divide both sides by 80.
3x+2\times \frac{27}{200}=0.3
Substitute \frac{27}{200} for y in 3x+2y=0.3. Because the resulting equation contains only one variable, you can solve for x directly.
3x+\frac{27}{100}=0.3
Multiply 2 times \frac{27}{200}.
3x=\frac{3}{100}
Subtract \frac{27}{100} from both sides of the equation.
x=\frac{1}{100}
Divide both sides by 3.
x=\frac{1}{100},y=\frac{27}{200}
The system is now solved.