Skip to main content
Solve for λ, b
Tick mark Image

Similar Problems from Web Search

Share

946\lambda +b=5500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
948\lambda +b=2750
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
946\lambda +b=5500,948\lambda +b=2750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
946\lambda +b=5500
Choose one of the equations and solve it for \lambda by isolating \lambda on the left hand side of the equal sign.
946\lambda =-b+5500
Subtract b from both sides of the equation.
\lambda =\frac{1}{946}\left(-b+5500\right)
Divide both sides by 946.
\lambda =-\frac{1}{946}b+\frac{250}{43}
Multiply \frac{1}{946} times -b+5500.
948\left(-\frac{1}{946}b+\frac{250}{43}\right)+b=2750
Substitute -\frac{b}{946}+\frac{250}{43} for \lambda in the other equation, 948\lambda +b=2750.
-\frac{474}{473}b+\frac{237000}{43}+b=2750
Multiply 948 times -\frac{b}{946}+\frac{250}{43}.
-\frac{1}{473}b+\frac{237000}{43}=2750
Add -\frac{474b}{473} to b.
-\frac{1}{473}b=-\frac{118750}{43}
Subtract \frac{237000}{43} from both sides of the equation.
b=1306250
Multiply both sides by -473.
\lambda =-\frac{1}{946}\times 1306250+\frac{250}{43}
Substitute 1306250 for b in \lambda =-\frac{1}{946}b+\frac{250}{43}. Because the resulting equation contains only one variable, you can solve for \lambda directly.
\lambda =\frac{-59375+250}{43}
Multiply -\frac{1}{946} times 1306250.
\lambda =-1375
Add \frac{250}{43} to -\frac{59375}{43} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\lambda =-1375,b=1306250
The system is now solved.
946\lambda +b=5500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
948\lambda +b=2750
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
946\lambda +b=5500,948\lambda +b=2750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}946&1\\948&1\end{matrix}\right)\left(\begin{matrix}\lambda \\b\end{matrix}\right)=\left(\begin{matrix}5500\\2750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}946&1\\948&1\end{matrix}\right))\left(\begin{matrix}946&1\\948&1\end{matrix}\right)\left(\begin{matrix}\lambda \\b\end{matrix}\right)=inverse(\left(\begin{matrix}946&1\\948&1\end{matrix}\right))\left(\begin{matrix}5500\\2750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}946&1\\948&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}\lambda \\b\end{matrix}\right)=inverse(\left(\begin{matrix}946&1\\948&1\end{matrix}\right))\left(\begin{matrix}5500\\2750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}\lambda \\b\end{matrix}\right)=inverse(\left(\begin{matrix}946&1\\948&1\end{matrix}\right))\left(\begin{matrix}5500\\2750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}\lambda \\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{946-948}&-\frac{1}{946-948}\\-\frac{948}{946-948}&\frac{946}{946-948}\end{matrix}\right)\left(\begin{matrix}5500\\2750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}\lambda \\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\474&-473\end{matrix}\right)\left(\begin{matrix}5500\\2750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}\lambda \\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5500+\frac{1}{2}\times 2750\\474\times 5500-473\times 2750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}\lambda \\b\end{matrix}\right)=\left(\begin{matrix}-1375\\1306250\end{matrix}\right)
Do the arithmetic.
\lambda =-1375,b=1306250
Extract the matrix elements \lambda and b.
946\lambda +b=5500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
948\lambda +b=2750
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
946\lambda +b=5500,948\lambda +b=2750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
946\lambda -948\lambda +b-b=5500-2750
Subtract 948\lambda +b=2750 from 946\lambda +b=5500 by subtracting like terms on each side of the equal sign.
946\lambda -948\lambda =5500-2750
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-2\lambda =5500-2750
Add 946\lambda to -948\lambda .
-2\lambda =2750
Add 5500 to -2750.
\lambda =-1375
Divide both sides by -2.
948\left(-1375\right)+b=2750
Substitute -1375 for \lambda in 948\lambda +b=2750. Because the resulting equation contains only one variable, you can solve for b directly.
-1303500+b=2750
Multiply 948 times -1375.
b=1306250
Add 1303500 to both sides of the equation.
\lambda =-1375,b=1306250
The system is now solved.