\left\{ \begin{array} { l } { 55 x + 70 y = 9000 } \\ { 60 x + 90 y = 10500 } \end{array} \right.
Solve for x, y
x=100
y=50
Graph
Share
Copied to clipboard
55x+70y=9000,60x+90y=10500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
55x+70y=9000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
55x=-70y+9000
Subtract 70y from both sides of the equation.
x=\frac{1}{55}\left(-70y+9000\right)
Divide both sides by 55.
x=-\frac{14}{11}y+\frac{1800}{11}
Multiply \frac{1}{55} times -70y+9000.
60\left(-\frac{14}{11}y+\frac{1800}{11}\right)+90y=10500
Substitute \frac{-14y+1800}{11} for x in the other equation, 60x+90y=10500.
-\frac{840}{11}y+\frac{108000}{11}+90y=10500
Multiply 60 times \frac{-14y+1800}{11}.
\frac{150}{11}y+\frac{108000}{11}=10500
Add -\frac{840y}{11} to 90y.
\frac{150}{11}y=\frac{7500}{11}
Subtract \frac{108000}{11} from both sides of the equation.
y=50
Divide both sides of the equation by \frac{150}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{14}{11}\times 50+\frac{1800}{11}
Substitute 50 for y in x=-\frac{14}{11}y+\frac{1800}{11}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-700+1800}{11}
Multiply -\frac{14}{11} times 50.
x=100
Add \frac{1800}{11} to -\frac{700}{11} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=100,y=50
The system is now solved.
55x+70y=9000,60x+90y=10500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}55&70\\60&90\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9000\\10500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}55&70\\60&90\end{matrix}\right))\left(\begin{matrix}55&70\\60&90\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}55&70\\60&90\end{matrix}\right))\left(\begin{matrix}9000\\10500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}55&70\\60&90\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}55&70\\60&90\end{matrix}\right))\left(\begin{matrix}9000\\10500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}55&70\\60&90\end{matrix}\right))\left(\begin{matrix}9000\\10500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{90}{55\times 90-70\times 60}&-\frac{70}{55\times 90-70\times 60}\\-\frac{60}{55\times 90-70\times 60}&\frac{55}{55\times 90-70\times 60}\end{matrix}\right)\left(\begin{matrix}9000\\10500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}&-\frac{7}{75}\\-\frac{2}{25}&\frac{11}{150}\end{matrix}\right)\left(\begin{matrix}9000\\10500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\times 9000-\frac{7}{75}\times 10500\\-\frac{2}{25}\times 9000+\frac{11}{150}\times 10500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\50\end{matrix}\right)
Do the arithmetic.
x=100,y=50
Extract the matrix elements x and y.
55x+70y=9000,60x+90y=10500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60\times 55x+60\times 70y=60\times 9000,55\times 60x+55\times 90y=55\times 10500
To make 55x and 60x equal, multiply all terms on each side of the first equation by 60 and all terms on each side of the second by 55.
3300x+4200y=540000,3300x+4950y=577500
Simplify.
3300x-3300x+4200y-4950y=540000-577500
Subtract 3300x+4950y=577500 from 3300x+4200y=540000 by subtracting like terms on each side of the equal sign.
4200y-4950y=540000-577500
Add 3300x to -3300x. Terms 3300x and -3300x cancel out, leaving an equation with only one variable that can be solved.
-750y=540000-577500
Add 4200y to -4950y.
-750y=-37500
Add 540000 to -577500.
y=50
Divide both sides by -750.
60x+90\times 50=10500
Substitute 50 for y in 60x+90y=10500. Because the resulting equation contains only one variable, you can solve for x directly.
60x+4500=10500
Multiply 90 times 50.
60x=6000
Subtract 4500 from both sides of the equation.
x=100
Divide both sides by 60.
x=100,y=50
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}