Skip to main content
Solve for k, b
Tick mark Image

Similar Problems from Web Search

Share

10k+b=500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=500,20k+b=900
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10k+b=500
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
10k=-b+500
Subtract b from both sides of the equation.
k=\frac{1}{10}\left(-b+500\right)
Divide both sides by 10.
k=-\frac{1}{10}b+50
Multiply \frac{1}{10} times -b+500.
20\left(-\frac{1}{10}b+50\right)+b=900
Substitute -\frac{b}{10}+50 for k in the other equation, 20k+b=900.
-2b+1000+b=900
Multiply 20 times -\frac{b}{10}+50.
-b+1000=900
Add -2b to b.
-b=-100
Subtract 1000 from both sides of the equation.
b=100
Divide both sides by -1.
k=-\frac{1}{10}\times 100+50
Substitute 100 for b in k=-\frac{1}{10}b+50. Because the resulting equation contains only one variable, you can solve for k directly.
k=-10+50
Multiply -\frac{1}{10} times 100.
k=40
Add 50 to -10.
k=40,b=100
The system is now solved.
10k+b=500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=500,20k+b=900
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&1\\20&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}500\\900\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&1\\20&1\end{matrix}\right))\left(\begin{matrix}10&1\\20&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\20&1\end{matrix}\right))\left(\begin{matrix}500\\900\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&1\\20&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\20&1\end{matrix}\right))\left(\begin{matrix}500\\900\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\20&1\end{matrix}\right))\left(\begin{matrix}500\\900\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-20}&-\frac{1}{10-20}\\-\frac{20}{10-20}&\frac{10}{10-20}\end{matrix}\right)\left(\begin{matrix}500\\900\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{1}{10}\\2&-1\end{matrix}\right)\left(\begin{matrix}500\\900\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 500+\frac{1}{10}\times 900\\2\times 500-900\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}40\\100\end{matrix}\right)
Do the arithmetic.
k=40,b=100
Extract the matrix elements k and b.
10k+b=500
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
20k+b=900
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=500,20k+b=900
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10k-20k+b-b=500-900
Subtract 20k+b=900 from 10k+b=500 by subtracting like terms on each side of the equal sign.
10k-20k=500-900
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-10k=500-900
Add 10k to -20k.
-10k=-400
Add 500 to -900.
k=40
Divide both sides by -10.
20\times 40+b=900
Substitute 40 for k in 20k+b=900. Because the resulting equation contains only one variable, you can solve for b directly.
800+b=900
Multiply 20 times 40.
b=100
Subtract 800 from both sides of the equation.
k=40,b=100
The system is now solved.