\left\{ \begin{array} { l } { 50 a + 40 b = 40050 } \\ { 60 a + 52 b = 5000 } \end{array} \right.
Solve for a, b
a=9413
b=-10765
Share
Copied to clipboard
50a+40b=40050,60a+52b=5000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
50a+40b=40050
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
50a=-40b+40050
Subtract 40b from both sides of the equation.
a=\frac{1}{50}\left(-40b+40050\right)
Divide both sides by 50.
a=-\frac{4}{5}b+801
Multiply \frac{1}{50} times -40b+40050.
60\left(-\frac{4}{5}b+801\right)+52b=5000
Substitute -\frac{4b}{5}+801 for a in the other equation, 60a+52b=5000.
-48b+48060+52b=5000
Multiply 60 times -\frac{4b}{5}+801.
4b+48060=5000
Add -48b to 52b.
4b=-43060
Subtract 48060 from both sides of the equation.
b=-10765
Divide both sides by 4.
a=-\frac{4}{5}\left(-10765\right)+801
Substitute -10765 for b in a=-\frac{4}{5}b+801. Because the resulting equation contains only one variable, you can solve for a directly.
a=8612+801
Multiply -\frac{4}{5} times -10765.
a=9413
Add 801 to 8612.
a=9413,b=-10765
The system is now solved.
50a+40b=40050,60a+52b=5000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}50&40\\60&52\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}40050\\5000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}50&40\\60&52\end{matrix}\right))\left(\begin{matrix}50&40\\60&52\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&40\\60&52\end{matrix}\right))\left(\begin{matrix}40050\\5000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}50&40\\60&52\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&40\\60&52\end{matrix}\right))\left(\begin{matrix}40050\\5000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&40\\60&52\end{matrix}\right))\left(\begin{matrix}40050\\5000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{52}{50\times 52-40\times 60}&-\frac{40}{50\times 52-40\times 60}\\-\frac{60}{50\times 52-40\times 60}&\frac{50}{50\times 52-40\times 60}\end{matrix}\right)\left(\begin{matrix}40050\\5000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{13}{50}&-\frac{1}{5}\\-\frac{3}{10}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}40050\\5000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{13}{50}\times 40050-\frac{1}{5}\times 5000\\-\frac{3}{10}\times 40050+\frac{1}{4}\times 5000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}9413\\-10765\end{matrix}\right)
Do the arithmetic.
a=9413,b=-10765
Extract the matrix elements a and b.
50a+40b=40050,60a+52b=5000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60\times 50a+60\times 40b=60\times 40050,50\times 60a+50\times 52b=50\times 5000
To make 50a and 60a equal, multiply all terms on each side of the first equation by 60 and all terms on each side of the second by 50.
3000a+2400b=2403000,3000a+2600b=250000
Simplify.
3000a-3000a+2400b-2600b=2403000-250000
Subtract 3000a+2600b=250000 from 3000a+2400b=2403000 by subtracting like terms on each side of the equal sign.
2400b-2600b=2403000-250000
Add 3000a to -3000a. Terms 3000a and -3000a cancel out, leaving an equation with only one variable that can be solved.
-200b=2403000-250000
Add 2400b to -2600b.
-200b=2153000
Add 2403000 to -250000.
b=-10765
Divide both sides by -200.
60a+52\left(-10765\right)=5000
Substitute -10765 for b in 60a+52b=5000. Because the resulting equation contains only one variable, you can solve for a directly.
60a-559780=5000
Multiply 52 times -10765.
60a=564780
Add 559780 to both sides of the equation.
a=9413
Divide both sides by 60.
a=9413,b=-10765
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}