\left\{ \begin{array} { l } { 50 = 150 K + B } \\ { 200 = 200 + B } \end{array} \right.
Solve for K, B
K=\frac{1}{3}\approx 0.333333333
B=0
Share
Copied to clipboard
200+B=200
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
B=200-200
Subtract 200 from both sides.
B=0
Subtract 200 from 200 to get 0.
50=150K+0
Consider the first equation. Insert the known values of variables into the equation.
50=150K
Anything plus zero gives itself.
150K=50
Swap sides so that all variable terms are on the left hand side.
K=\frac{50}{150}
Divide both sides by 150.
K=\frac{1}{3}
Reduce the fraction \frac{50}{150} to lowest terms by extracting and canceling out 50.
K=\frac{1}{3} B=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}