Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5y-10x=0
Consider the first equation. Subtract 10x from both sides.
5y-10x=0,x^{2}+y^{2}=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5y-10x=0
Solve 5y-10x=0 for y by isolating y on the left hand side of the equal sign.
5y=10x
Subtract -10x from both sides of the equation.
y=2x
Divide both sides by 5.
x^{2}+\left(2x\right)^{2}=36
Substitute 2x for y in the other equation, x^{2}+y^{2}=36.
x^{2}+4x^{2}=36
Square 2x.
5x^{2}=36
Add x^{2} to 4x^{2}.
5x^{2}-36=0
Subtract 36 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-36\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 0\times 2\times 2 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-36\right)}}{2\times 5}
Square 1\times 0\times 2\times 2.
x=\frac{0±\sqrt{-20\left(-36\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
x=\frac{0±\sqrt{720}}{2\times 5}
Multiply -20 times -36.
x=\frac{0±12\sqrt{5}}{2\times 5}
Take the square root of 720.
x=\frac{0±12\sqrt{5}}{10}
Multiply 2 times 1+1\times 2^{2}.
x=\frac{6\sqrt{5}}{5}
Now solve the equation x=\frac{0±12\sqrt{5}}{10} when ± is plus.
x=-\frac{6\sqrt{5}}{5}
Now solve the equation x=\frac{0±12\sqrt{5}}{10} when ± is minus.
y=2\times \frac{6\sqrt{5}}{5}
There are two solutions for x: \frac{6\sqrt{5}}{5} and -\frac{6\sqrt{5}}{5}. Substitute \frac{6\sqrt{5}}{5} for x in the equation y=2x to find the corresponding solution for y that satisfies both equations.
y=2\left(-\frac{6\sqrt{5}}{5}\right)
Now substitute -\frac{6\sqrt{5}}{5} for x in the equation y=2x and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{6\sqrt{5}}{5},x=\frac{6\sqrt{5}}{5}\text{ or }y=2\left(-\frac{6\sqrt{5}}{5}\right),x=-\frac{6\sqrt{5}}{5}
The system is now solved.