\left\{ \begin{array} { l } { 5 y = 10 x } \\ { x ^ { 2 } + y ^ { 2 } = 36 } \end{array} \right.
Solve for y, x
x=-\frac{6\sqrt{5}}{5}\approx -2.683281573\text{, }y=-\frac{12\sqrt{5}}{5}\approx -5.366563146
x=\frac{6\sqrt{5}}{5}\approx 2.683281573\text{, }y=\frac{12\sqrt{5}}{5}\approx 5.366563146
Graph
Share
Copied to clipboard
5y-10x=0
Consider the first equation. Subtract 10x from both sides.
5y-10x=0,x^{2}+y^{2}=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5y-10x=0
Solve 5y-10x=0 for y by isolating y on the left hand side of the equal sign.
5y=10x
Subtract -10x from both sides of the equation.
y=2x
Divide both sides by 5.
x^{2}+\left(2x\right)^{2}=36
Substitute 2x for y in the other equation, x^{2}+y^{2}=36.
x^{2}+4x^{2}=36
Square 2x.
5x^{2}=36
Add x^{2} to 4x^{2}.
5x^{2}-36=0
Subtract 36 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-36\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 2^{2} for a, 1\times 0\times 2\times 2 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-36\right)}}{2\times 5}
Square 1\times 0\times 2\times 2.
x=\frac{0±\sqrt{-20\left(-36\right)}}{2\times 5}
Multiply -4 times 1+1\times 2^{2}.
x=\frac{0±\sqrt{720}}{2\times 5}
Multiply -20 times -36.
x=\frac{0±12\sqrt{5}}{2\times 5}
Take the square root of 720.
x=\frac{0±12\sqrt{5}}{10}
Multiply 2 times 1+1\times 2^{2}.
x=\frac{6\sqrt{5}}{5}
Now solve the equation x=\frac{0±12\sqrt{5}}{10} when ± is plus.
x=-\frac{6\sqrt{5}}{5}
Now solve the equation x=\frac{0±12\sqrt{5}}{10} when ± is minus.
y=2\times \frac{6\sqrt{5}}{5}
There are two solutions for x: \frac{6\sqrt{5}}{5} and -\frac{6\sqrt{5}}{5}. Substitute \frac{6\sqrt{5}}{5} for x in the equation y=2x to find the corresponding solution for y that satisfies both equations.
y=2\left(-\frac{6\sqrt{5}}{5}\right)
Now substitute -\frac{6\sqrt{5}}{5} for x in the equation y=2x and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{6\sqrt{5}}{5},x=\frac{6\sqrt{5}}{5}\text{ or }y=2\left(-\frac{6\sqrt{5}}{5}\right),x=-\frac{6\sqrt{5}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}