\left\{ \begin{array} { l } { 5 x - 4 y = 330 } \\ { 3 x + 8 y = - 238 } \end{array} \right.
Solve for x, y
x = \frac{422}{13} = 32\frac{6}{13} \approx 32.461538462
y = -\frac{545}{13} = -41\frac{12}{13} \approx -41.923076923
Graph
Share
Copied to clipboard
5x-4y=330,3x+8y=-238
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-4y=330
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=4y+330
Add 4y to both sides of the equation.
x=\frac{1}{5}\left(4y+330\right)
Divide both sides by 5.
x=\frac{4}{5}y+66
Multiply \frac{1}{5} times 4y+330.
3\left(\frac{4}{5}y+66\right)+8y=-238
Substitute \frac{4y}{5}+66 for x in the other equation, 3x+8y=-238.
\frac{12}{5}y+198+8y=-238
Multiply 3 times \frac{4y}{5}+66.
\frac{52}{5}y+198=-238
Add \frac{12y}{5} to 8y.
\frac{52}{5}y=-436
Subtract 198 from both sides of the equation.
y=-\frac{545}{13}
Divide both sides of the equation by \frac{52}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{4}{5}\left(-\frac{545}{13}\right)+66
Substitute -\frac{545}{13} for y in x=\frac{4}{5}y+66. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{436}{13}+66
Multiply \frac{4}{5} times -\frac{545}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{422}{13}
Add 66 to -\frac{436}{13}.
x=\frac{422}{13},y=-\frac{545}{13}
The system is now solved.
5x-4y=330,3x+8y=-238
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-4\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}330\\-238\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-4\\3&8\end{matrix}\right))\left(\begin{matrix}5&-4\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&8\end{matrix}\right))\left(\begin{matrix}330\\-238\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-4\\3&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&8\end{matrix}\right))\left(\begin{matrix}330\\-238\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&8\end{matrix}\right))\left(\begin{matrix}330\\-238\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-\left(-4\times 3\right)}&-\frac{-4}{5\times 8-\left(-4\times 3\right)}\\-\frac{3}{5\times 8-\left(-4\times 3\right)}&\frac{5}{5\times 8-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}330\\-238\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{3}{52}&\frac{5}{52}\end{matrix}\right)\left(\begin{matrix}330\\-238\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 330+\frac{1}{13}\left(-238\right)\\-\frac{3}{52}\times 330+\frac{5}{52}\left(-238\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{422}{13}\\-\frac{545}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{422}{13},y=-\frac{545}{13}
Extract the matrix elements x and y.
5x-4y=330,3x+8y=-238
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 5x+3\left(-4\right)y=3\times 330,5\times 3x+5\times 8y=5\left(-238\right)
To make 5x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 5.
15x-12y=990,15x+40y=-1190
Simplify.
15x-15x-12y-40y=990+1190
Subtract 15x+40y=-1190 from 15x-12y=990 by subtracting like terms on each side of the equal sign.
-12y-40y=990+1190
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
-52y=990+1190
Add -12y to -40y.
-52y=2180
Add 990 to 1190.
y=-\frac{545}{13}
Divide both sides by -52.
3x+8\left(-\frac{545}{13}\right)=-238
Substitute -\frac{545}{13} for y in 3x+8y=-238. Because the resulting equation contains only one variable, you can solve for x directly.
3x-\frac{4360}{13}=-238
Multiply 8 times -\frac{545}{13}.
3x=\frac{1266}{13}
Add \frac{4360}{13} to both sides of the equation.
x=\frac{422}{13}
Divide both sides by 3.
x=\frac{422}{13},y=-\frac{545}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}