\left\{ \begin{array} { l } { 5 x + 7 y = 2060 } \\ { 2060 - 2 x - 4 y = 120 } \end{array} \right.
Solve for x, y
x=-890
y=930
Graph
Share
Copied to clipboard
5x+7y=2060,-2x-4y+2060=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+7y=2060
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-7y+2060
Subtract 7y from both sides of the equation.
x=\frac{1}{5}\left(-7y+2060\right)
Divide both sides by 5.
x=-\frac{7}{5}y+412
Multiply \frac{1}{5} times -7y+2060.
-2\left(-\frac{7}{5}y+412\right)-4y+2060=120
Substitute -\frac{7y}{5}+412 for x in the other equation, -2x-4y+2060=120.
\frac{14}{5}y-824-4y+2060=120
Multiply -2 times -\frac{7y}{5}+412.
-\frac{6}{5}y-824+2060=120
Add \frac{14y}{5} to -4y.
-\frac{6}{5}y+1236=120
Add -824 to 2060.
-\frac{6}{5}y=-1116
Subtract 1236 from both sides of the equation.
y=930
Divide both sides of the equation by -\frac{6}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{5}\times 930+412
Substitute 930 for y in x=-\frac{7}{5}y+412. Because the resulting equation contains only one variable, you can solve for x directly.
x=-1302+412
Multiply -\frac{7}{5} times 930.
x=-890
Add 412 to -1302.
x=-890,y=930
The system is now solved.
5x+7y=2060,-2x-4y+2060=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2060\\-1940\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1940\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&7\\-2&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1940\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1940\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-7\left(-2\right)}&-\frac{7}{5\left(-4\right)-7\left(-2\right)}\\-\frac{-2}{5\left(-4\right)-7\left(-2\right)}&\frac{5}{5\left(-4\right)-7\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2060\\-1940\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{6}\\-\frac{1}{3}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}2060\\-1940\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 2060+\frac{7}{6}\left(-1940\right)\\-\frac{1}{3}\times 2060-\frac{5}{6}\left(-1940\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-890\\930\end{matrix}\right)
Do the arithmetic.
x=-890,y=930
Extract the matrix elements x and y.
5x+7y=2060,-2x-4y+2060=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 5x-2\times 7y=-2\times 2060,5\left(-2\right)x+5\left(-4\right)y+5\times 2060=5\times 120
To make 5x and -2x equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 5.
-10x-14y=-4120,-10x-20y+10300=600
Simplify.
-10x+10x-14y+20y-10300=-4120-600
Subtract -10x-20y+10300=600 from -10x-14y=-4120 by subtracting like terms on each side of the equal sign.
-14y+20y-10300=-4120-600
Add -10x to 10x. Terms -10x and 10x cancel out, leaving an equation with only one variable that can be solved.
6y-10300=-4120-600
Add -14y to 20y.
6y-10300=-4720
Add -4120 to -600.
6y=5580
Add 10300 to both sides of the equation.
y=930
Divide both sides by 6.
-2x-4\times 930+2060=120
Substitute 930 for y in -2x-4y+2060=120. Because the resulting equation contains only one variable, you can solve for x directly.
-2x-3720+2060=120
Multiply -4 times 930.
-2x-1660=120
Add -3720 to 2060.
-2x=1780
Add 1660 to both sides of the equation.
x=-890
Divide both sides by -2.
x=-890,y=930
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}