\left\{ \begin{array} { l } { 5 x + 7 b = 2060 } \\ { 2 x + 4 b = 1020 } \end{array} \right.
Solve for x, b
x = \frac{550}{3} = 183\frac{1}{3} \approx 183.333333333
b = \frac{490}{3} = 163\frac{1}{3} \approx 163.333333333
Graph
Share
Copied to clipboard
5x+7b=2060,2x+4b=1020
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+7b=2060
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-7b+2060
Subtract 7b from both sides of the equation.
x=\frac{1}{5}\left(-7b+2060\right)
Divide both sides by 5.
x=-\frac{7}{5}b+412
Multiply \frac{1}{5} times -7b+2060.
2\left(-\frac{7}{5}b+412\right)+4b=1020
Substitute -\frac{7b}{5}+412 for x in the other equation, 2x+4b=1020.
-\frac{14}{5}b+824+4b=1020
Multiply 2 times -\frac{7b}{5}+412.
\frac{6}{5}b+824=1020
Add -\frac{14b}{5} to 4b.
\frac{6}{5}b=196
Subtract 824 from both sides of the equation.
b=\frac{490}{3}
Divide both sides of the equation by \frac{6}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{5}\times \frac{490}{3}+412
Substitute \frac{490}{3} for b in x=-\frac{7}{5}b+412. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{686}{3}+412
Multiply -\frac{7}{5} times \frac{490}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{550}{3}
Add 412 to -\frac{686}{3}.
x=\frac{550}{3},b=\frac{490}{3}
The system is now solved.
5x+7b=2060,2x+4b=1020
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\b\end{matrix}\right)=\left(\begin{matrix}2060\\1020\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}5&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}2060\\1020\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&7\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}2060\\1020\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}2060\\1020\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-7\times 2}&-\frac{7}{5\times 4-7\times 2}\\-\frac{2}{5\times 4-7\times 2}&\frac{5}{5\times 4-7\times 2}\end{matrix}\right)\left(\begin{matrix}2060\\1020\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{7}{6}\\-\frac{1}{3}&\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}2060\\1020\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 2060-\frac{7}{6}\times 1020\\-\frac{1}{3}\times 2060+\frac{5}{6}\times 1020\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\b\end{matrix}\right)=\left(\begin{matrix}\frac{550}{3}\\\frac{490}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{550}{3},b=\frac{490}{3}
Extract the matrix elements x and b.
5x+7b=2060,2x+4b=1020
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 5x+2\times 7b=2\times 2060,5\times 2x+5\times 4b=5\times 1020
To make 5x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 5.
10x+14b=4120,10x+20b=5100
Simplify.
10x-10x+14b-20b=4120-5100
Subtract 10x+20b=5100 from 10x+14b=4120 by subtracting like terms on each side of the equal sign.
14b-20b=4120-5100
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-6b=4120-5100
Add 14b to -20b.
-6b=-980
Add 4120 to -5100.
b=\frac{490}{3}
Divide both sides by -6.
2x+4\times \frac{490}{3}=1020
Substitute \frac{490}{3} for b in 2x+4b=1020. Because the resulting equation contains only one variable, you can solve for x directly.
2x+\frac{1960}{3}=1020
Multiply 4 times \frac{490}{3}.
2x=\frac{1100}{3}
Subtract \frac{1960}{3} from both sides of the equation.
x=\frac{550}{3}
Divide both sides by 2.
x=\frac{550}{3},b=\frac{490}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}