\left\{ \begin{array} { l } { 5 x + 5 x = 46 } \\ { 7 x + 8 y = 5 } \end{array} \right.
Solve for x, y
x = \frac{23}{5} = 4\frac{3}{5} = 4.6
y = -\frac{17}{5} = -3\frac{2}{5} = -3.4
Graph
Share
Copied to clipboard
10x=46
Consider the first equation. Combine 5x and 5x to get 10x.
x=\frac{46}{10}
Divide both sides by 10.
x=\frac{23}{5}
Reduce the fraction \frac{46}{10} to lowest terms by extracting and canceling out 2.
7\times \frac{23}{5}+8y=5
Consider the second equation. Insert the known values of variables into the equation.
\frac{161}{5}+8y=5
Multiply 7 and \frac{23}{5} to get \frac{161}{5}.
8y=5-\frac{161}{5}
Subtract \frac{161}{5} from both sides.
8y=-\frac{136}{5}
Subtract \frac{161}{5} from 5 to get -\frac{136}{5}.
y=\frac{-\frac{136}{5}}{8}
Divide both sides by 8.
y=\frac{-136}{5\times 8}
Express \frac{-\frac{136}{5}}{8} as a single fraction.
y=\frac{-136}{40}
Multiply 5 and 8 to get 40.
y=-\frac{17}{5}
Reduce the fraction \frac{-136}{40} to lowest terms by extracting and canceling out 8.
x=\frac{23}{5} y=-\frac{17}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}