\left\{ \begin{array} { l } { 5 x + 3 y = 231 } \\ { 2 x + 3 y = 141 } \end{array} \right.
Solve for x, y
x=30
y=27
Graph
Share
Copied to clipboard
5x+3y=231,2x+3y=141
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+3y=231
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-3y+231
Subtract 3y from both sides of the equation.
x=\frac{1}{5}\left(-3y+231\right)
Divide both sides by 5.
x=-\frac{3}{5}y+\frac{231}{5}
Multiply \frac{1}{5} times -3y+231.
2\left(-\frac{3}{5}y+\frac{231}{5}\right)+3y=141
Substitute \frac{-3y+231}{5} for x in the other equation, 2x+3y=141.
-\frac{6}{5}y+\frac{462}{5}+3y=141
Multiply 2 times \frac{-3y+231}{5}.
\frac{9}{5}y+\frac{462}{5}=141
Add -\frac{6y}{5} to 3y.
\frac{9}{5}y=\frac{243}{5}
Subtract \frac{462}{5} from both sides of the equation.
y=27
Divide both sides of the equation by \frac{9}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{5}\times 27+\frac{231}{5}
Substitute 27 for y in x=-\frac{3}{5}y+\frac{231}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-81+231}{5}
Multiply -\frac{3}{5} times 27.
x=30
Add \frac{231}{5} to -\frac{81}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=30,y=27
The system is now solved.
5x+3y=231,2x+3y=141
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}231\\141\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\2&3\end{matrix}\right))\left(\begin{matrix}5&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&3\end{matrix}\right))\left(\begin{matrix}231\\141\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&3\end{matrix}\right))\left(\begin{matrix}231\\141\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&3\end{matrix}\right))\left(\begin{matrix}231\\141\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-3\times 2}&-\frac{3}{5\times 3-3\times 2}\\-\frac{2}{5\times 3-3\times 2}&\frac{5}{5\times 3-3\times 2}\end{matrix}\right)\left(\begin{matrix}231\\141\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{2}{9}&\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}231\\141\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 231-\frac{1}{3}\times 141\\-\frac{2}{9}\times 231+\frac{5}{9}\times 141\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\27\end{matrix}\right)
Do the arithmetic.
x=30,y=27
Extract the matrix elements x and y.
5x+3y=231,2x+3y=141
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x-2x+3y-3y=231-141
Subtract 2x+3y=141 from 5x+3y=231 by subtracting like terms on each side of the equal sign.
5x-2x=231-141
Add 3y to -3y. Terms 3y and -3y cancel out, leaving an equation with only one variable that can be solved.
3x=231-141
Add 5x to -2x.
3x=90
Add 231 to -141.
x=30
Divide both sides by 3.
2\times 30+3y=141
Substitute 30 for x in 2x+3y=141. Because the resulting equation contains only one variable, you can solve for y directly.
60+3y=141
Multiply 2 times 30.
3y=81
Subtract 60 from both sides of the equation.
y=27
Divide both sides by 3.
x=30,y=27
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}