\left\{ \begin{array} { l } { 5 x + 2 y - 3 z = 0 } \\ { 2 z + y = x } \\ { 4 x = 6 } \end{array} \right.
Solve for x, y, z
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
z = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
2z+y=x 5x+2y-3z=0 4x=6
Reorder the equations.
x=2z+y
Solve 2z+y=x for x.
5\left(2z+y\right)+2y-3z=0 4\left(2z+y\right)=6
Substitute 2z+y for x in the second and third equation.
y=-z z=-\frac{1}{2}y+\frac{3}{4}
Solve these equations for y and z respectively.
z=-\frac{1}{2}\left(-1\right)z+\frac{3}{4}
Substitute -z for y in the equation z=-\frac{1}{2}y+\frac{3}{4}.
z=\frac{3}{2}
Solve z=-\frac{1}{2}\left(-1\right)z+\frac{3}{4} for z.
y=-\frac{3}{2}
Substitute \frac{3}{2} for z in the equation y=-z.
x=2\times \frac{3}{2}-\frac{3}{2}
Substitute -\frac{3}{2} for y and \frac{3}{2} for z in the equation x=2z+y.
x=\frac{3}{2}
Calculate x from x=2\times \frac{3}{2}-\frac{3}{2}.
x=\frac{3}{2} y=-\frac{3}{2} z=\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}