\left\{ \begin{array} { l } { 5 x + 1 = 8 } \\ { 3 x + 7 y = 16 } \end{array} \right.
Solve for x, y
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
y = \frac{59}{35} = 1\frac{24}{35} \approx 1.685714286
Graph
Share
Copied to clipboard
5x=8-1
Consider the first equation. Subtract 1 from both sides.
5x=7
Subtract 1 from 8 to get 7.
x=\frac{7}{5}
Divide both sides by 5.
3\times \frac{7}{5}+7y=16
Consider the second equation. Insert the known values of variables into the equation.
\frac{21}{5}+7y=16
Multiply 3 and \frac{7}{5} to get \frac{21}{5}.
7y=16-\frac{21}{5}
Subtract \frac{21}{5} from both sides.
7y=\frac{59}{5}
Subtract \frac{21}{5} from 16 to get \frac{59}{5}.
y=\frac{\frac{59}{5}}{7}
Divide both sides by 7.
y=\frac{59}{5\times 7}
Express \frac{\frac{59}{5}}{7} as a single fraction.
y=\frac{59}{35}
Multiply 5 and 7 to get 35.
x=\frac{7}{5} y=\frac{59}{35}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}