\left\{ \begin{array} { l } { 5 a + 3 b = 5 } \\ { - 2 a + 4 b = 24 } \end{array} \right.
Solve for a, b
a=-2
b=5
Share
Copied to clipboard
5a+3b=5,-2a+4b=24
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5a+3b=5
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
5a=-3b+5
Subtract 3b from both sides of the equation.
a=\frac{1}{5}\left(-3b+5\right)
Divide both sides by 5.
a=-\frac{3}{5}b+1
Multiply \frac{1}{5} times -3b+5.
-2\left(-\frac{3}{5}b+1\right)+4b=24
Substitute -\frac{3b}{5}+1 for a in the other equation, -2a+4b=24.
\frac{6}{5}b-2+4b=24
Multiply -2 times -\frac{3b}{5}+1.
\frac{26}{5}b-2=24
Add \frac{6b}{5} to 4b.
\frac{26}{5}b=26
Add 2 to both sides of the equation.
b=5
Divide both sides of the equation by \frac{26}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{3}{5}\times 5+1
Substitute 5 for b in a=-\frac{3}{5}b+1. Because the resulting equation contains only one variable, you can solve for a directly.
a=-3+1
Multiply -\frac{3}{5} times 5.
a=-2
Add 1 to -3.
a=-2,b=5
The system is now solved.
5a+3b=5,-2a+4b=24
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\-2&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\-2&4\end{matrix}\right))\left(\begin{matrix}5&3\\-2&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-2&4\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\-2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-2&4\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-2&4\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-3\left(-2\right)}&-\frac{3}{5\times 4-3\left(-2\right)}\\-\frac{-2}{5\times 4-3\left(-2\right)}&\frac{5}{5\times 4-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&-\frac{3}{26}\\\frac{1}{13}&\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 5-\frac{3}{26}\times 24\\\frac{1}{13}\times 5+\frac{5}{26}\times 24\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\5\end{matrix}\right)
Do the arithmetic.
a=-2,b=5
Extract the matrix elements a and b.
5a+3b=5,-2a+4b=24
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 5a-2\times 3b=-2\times 5,5\left(-2\right)a+5\times 4b=5\times 24
To make 5a and -2a equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 5.
-10a-6b=-10,-10a+20b=120
Simplify.
-10a+10a-6b-20b=-10-120
Subtract -10a+20b=120 from -10a-6b=-10 by subtracting like terms on each side of the equal sign.
-6b-20b=-10-120
Add -10a to 10a. Terms -10a and 10a cancel out, leaving an equation with only one variable that can be solved.
-26b=-10-120
Add -6b to -20b.
-26b=-130
Add -10 to -120.
b=5
Divide both sides by -26.
-2a+4\times 5=24
Substitute 5 for b in -2a+4b=24. Because the resulting equation contains only one variable, you can solve for a directly.
-2a+20=24
Multiply 4 times 5.
-2a=4
Subtract 20 from both sides of the equation.
a=-2
Divide both sides by -2.
a=-2,b=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}