\left\{ \begin{array} { l } { 5 ( x + y ) = 100 } \\ { ( 5 + 5 ) ( x - y ) = 100 } \end{array} \right.
Solve for x, y
x=15
y=5
Graph
Share
Copied to clipboard
x+y=\frac{100}{5}
Consider the first equation. Divide both sides by 5.
x+y=20
Divide 100 by 5 to get 20.
10\left(x-y\right)=100
Consider the second equation. Add 5 and 5 to get 10.
10x-10y=100
Use the distributive property to multiply 10 by x-y.
x+y=20,10x-10y=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+20
Subtract y from both sides of the equation.
10\left(-y+20\right)-10y=100
Substitute -y+20 for x in the other equation, 10x-10y=100.
-10y+200-10y=100
Multiply 10 times -y+20.
-20y+200=100
Add -10y to -10y.
-20y=-100
Subtract 200 from both sides of the equation.
y=5
Divide both sides by -20.
x=-5+20
Substitute 5 for y in x=-y+20. Because the resulting equation contains only one variable, you can solve for x directly.
x=15
Add 20 to -5.
x=15,y=5
The system is now solved.
x+y=\frac{100}{5}
Consider the first equation. Divide both sides by 5.
x+y=20
Divide 100 by 5 to get 20.
10\left(x-y\right)=100
Consider the second equation. Add 5 and 5 to get 10.
10x-10y=100
Use the distributive property to multiply 10 by x-y.
x+y=20,10x-10y=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\10&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\10&-10\end{matrix}\right))\left(\begin{matrix}1&1\\10&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&-10\end{matrix}\right))\left(\begin{matrix}20\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\10&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&-10\end{matrix}\right))\left(\begin{matrix}20\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&-10\end{matrix}\right))\left(\begin{matrix}20\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{-10-10}&-\frac{1}{-10-10}\\-\frac{10}{-10-10}&\frac{1}{-10-10}\end{matrix}\right)\left(\begin{matrix}20\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{20}\\\frac{1}{2}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}20\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 20+\frac{1}{20}\times 100\\\frac{1}{2}\times 20-\frac{1}{20}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\5\end{matrix}\right)
Do the arithmetic.
x=15,y=5
Extract the matrix elements x and y.
x+y=\frac{100}{5}
Consider the first equation. Divide both sides by 5.
x+y=20
Divide 100 by 5 to get 20.
10\left(x-y\right)=100
Consider the second equation. Add 5 and 5 to get 10.
10x-10y=100
Use the distributive property to multiply 10 by x-y.
x+y=20,10x-10y=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+10y=10\times 20,10x-10y=100
To make x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 1.
10x+10y=200,10x-10y=100
Simplify.
10x-10x+10y+10y=200-100
Subtract 10x-10y=100 from 10x+10y=200 by subtracting like terms on each side of the equal sign.
10y+10y=200-100
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
20y=200-100
Add 10y to 10y.
20y=100
Add 200 to -100.
y=5
Divide both sides by 20.
10x-10\times 5=100
Substitute 5 for y in 10x-10y=100. Because the resulting equation contains only one variable, you can solve for x directly.
10x-50=100
Multiply -10 times 5.
10x=150
Add 50 to both sides of the equation.
x=15
Divide both sides by 10.
x=15,y=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}