\left\{ \begin{array} { l } { 5 = 4 a + 2 b + c } \\ { \frac { - 1 - a } { 4 a } = - \frac { 17 } { 4 } } \\ { b = 2 a } \end{array} \right.
Solve for a, b, c
a=\frac{1}{16}=0.0625
b=\frac{1}{8}=0.125
c = \frac{9}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
-1-a=-17a
Consider the second equation. Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4a, the least common multiple of 4a,4.
-1-a+17a=0
Add 17a to both sides.
-1+16a=0
Combine -a and 17a to get 16a.
16a=1
Add 1 to both sides. Anything plus zero gives itself.
a=\frac{1}{16}
Divide both sides by 16.
b=2\times \frac{1}{16}
Consider the third equation. Insert the known values of variables into the equation.
b=\frac{1}{8}
Multiply 2 and \frac{1}{16} to get \frac{1}{8}.
5=4\times \frac{1}{16}+2\times \frac{1}{8}+c
Consider the first equation. Insert the known values of variables into the equation.
5=\frac{1}{4}+2\times \frac{1}{8}+c
Multiply 4 and \frac{1}{16} to get \frac{1}{4}.
5=\frac{1}{4}+\frac{1}{4}+c
Multiply 2 and \frac{1}{8} to get \frac{1}{4}.
5=\frac{1}{2}+c
Add \frac{1}{4} and \frac{1}{4} to get \frac{1}{2}.
\frac{1}{2}+c=5
Swap sides so that all variable terms are on the left hand side.
c=5-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
c=\frac{9}{2}
Subtract \frac{1}{2} from 5 to get \frac{9}{2}.
a=\frac{1}{16} b=\frac{1}{8} c=\frac{9}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}