\left\{ \begin{array} { l } { 47 + 7 y = 195 } \\ { 3 x + 4 y = 19 } \end{array} \right.
Solve for y, x
x = -\frac{153}{7} = -21\frac{6}{7} \approx -21.857142857
y = \frac{148}{7} = 21\frac{1}{7} \approx 21.142857143
Graph
Share
Copied to clipboard
7y=195-47
Consider the first equation. Subtract 47 from both sides.
7y=148
Subtract 47 from 195 to get 148.
y=\frac{148}{7}
Divide both sides by 7.
3x+4\times \frac{148}{7}=19
Consider the second equation. Insert the known values of variables into the equation.
3x+\frac{592}{7}=19
Multiply 4 and \frac{148}{7} to get \frac{592}{7}.
3x=19-\frac{592}{7}
Subtract \frac{592}{7} from both sides.
3x=-\frac{459}{7}
Subtract \frac{592}{7} from 19 to get -\frac{459}{7}.
x=\frac{-\frac{459}{7}}{3}
Divide both sides by 3.
x=\frac{-459}{7\times 3}
Express \frac{-\frac{459}{7}}{3} as a single fraction.
x=\frac{-459}{21}
Multiply 7 and 3 to get 21.
x=-\frac{153}{7}
Reduce the fraction \frac{-459}{21} to lowest terms by extracting and canceling out 3.
y=\frac{148}{7} x=-\frac{153}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}