\left\{ \begin{array} { l } { 46 x + 35 y = 12 } \\ { 35 x + 46 y = 116 } \end{array} \right.
Solve for x, y
x = -\frac{3508}{891} = -3\frac{835}{891} \approx -3.93714927
y = \frac{4916}{891} = 5\frac{461}{891} \approx 5.517396184
Graph
Share
Copied to clipboard
46x+35y=12,35x+46y=116
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
46x+35y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
46x=-35y+12
Subtract 35y from both sides of the equation.
x=\frac{1}{46}\left(-35y+12\right)
Divide both sides by 46.
x=-\frac{35}{46}y+\frac{6}{23}
Multiply \frac{1}{46} times -35y+12.
35\left(-\frac{35}{46}y+\frac{6}{23}\right)+46y=116
Substitute -\frac{35y}{46}+\frac{6}{23} for x in the other equation, 35x+46y=116.
-\frac{1225}{46}y+\frac{210}{23}+46y=116
Multiply 35 times -\frac{35y}{46}+\frac{6}{23}.
\frac{891}{46}y+\frac{210}{23}=116
Add -\frac{1225y}{46} to 46y.
\frac{891}{46}y=\frac{2458}{23}
Subtract \frac{210}{23} from both sides of the equation.
y=\frac{4916}{891}
Divide both sides of the equation by \frac{891}{46}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{35}{46}\times \frac{4916}{891}+\frac{6}{23}
Substitute \frac{4916}{891} for y in x=-\frac{35}{46}y+\frac{6}{23}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{86030}{20493}+\frac{6}{23}
Multiply -\frac{35}{46} times \frac{4916}{891} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{3508}{891}
Add \frac{6}{23} to -\frac{86030}{20493} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3508}{891},y=\frac{4916}{891}
The system is now solved.
46x+35y=12,35x+46y=116
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}46&35\\35&46\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\116\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}46&35\\35&46\end{matrix}\right))\left(\begin{matrix}46&35\\35&46\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}46&35\\35&46\end{matrix}\right))\left(\begin{matrix}12\\116\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}46&35\\35&46\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}46&35\\35&46\end{matrix}\right))\left(\begin{matrix}12\\116\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}46&35\\35&46\end{matrix}\right))\left(\begin{matrix}12\\116\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{46}{46\times 46-35\times 35}&-\frac{35}{46\times 46-35\times 35}\\-\frac{35}{46\times 46-35\times 35}&\frac{46}{46\times 46-35\times 35}\end{matrix}\right)\left(\begin{matrix}12\\116\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{46}{891}&-\frac{35}{891}\\-\frac{35}{891}&\frac{46}{891}\end{matrix}\right)\left(\begin{matrix}12\\116\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{46}{891}\times 12-\frac{35}{891}\times 116\\-\frac{35}{891}\times 12+\frac{46}{891}\times 116\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3508}{891}\\\frac{4916}{891}\end{matrix}\right)
Do the arithmetic.
x=-\frac{3508}{891},y=\frac{4916}{891}
Extract the matrix elements x and y.
46x+35y=12,35x+46y=116
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
35\times 46x+35\times 35y=35\times 12,46\times 35x+46\times 46y=46\times 116
To make 46x and 35x equal, multiply all terms on each side of the first equation by 35 and all terms on each side of the second by 46.
1610x+1225y=420,1610x+2116y=5336
Simplify.
1610x-1610x+1225y-2116y=420-5336
Subtract 1610x+2116y=5336 from 1610x+1225y=420 by subtracting like terms on each side of the equal sign.
1225y-2116y=420-5336
Add 1610x to -1610x. Terms 1610x and -1610x cancel out, leaving an equation with only one variable that can be solved.
-891y=420-5336
Add 1225y to -2116y.
-891y=-4916
Add 420 to -5336.
y=\frac{4916}{891}
Divide both sides by -891.
35x+46\times \frac{4916}{891}=116
Substitute \frac{4916}{891} for y in 35x+46y=116. Because the resulting equation contains only one variable, you can solve for x directly.
35x+\frac{226136}{891}=116
Multiply 46 times \frac{4916}{891}.
35x=-\frac{122780}{891}
Subtract \frac{226136}{891} from both sides of the equation.
x=-\frac{3508}{891}
Divide both sides by 35.
x=-\frac{3508}{891},y=\frac{4916}{891}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}