\left\{ \begin{array} { l } { 40 - 2 x - y = 2 x + 5 y + 2 } \\ { 8 x - 3 y - 4 = 40 - 2 x - y } \end{array} \right.
Solve for x, y
x=5
y=3
Graph
Share
Copied to clipboard
40-2x-y-2x=5y+2
Consider the first equation. Subtract 2x from both sides.
40-4x-y=5y+2
Combine -2x and -2x to get -4x.
40-4x-y-5y=2
Subtract 5y from both sides.
40-4x-6y=2
Combine -y and -5y to get -6y.
-4x-6y=2-40
Subtract 40 from both sides.
-4x-6y=-38
Subtract 40 from 2 to get -38.
8x-3y-4+2x=40-y
Consider the second equation. Add 2x to both sides.
10x-3y-4=40-y
Combine 8x and 2x to get 10x.
10x-3y-4+y=40
Add y to both sides.
10x-2y-4=40
Combine -3y and y to get -2y.
10x-2y=40+4
Add 4 to both sides.
10x-2y=44
Add 40 and 4 to get 44.
-4x-6y=-38,10x-2y=44
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-4x-6y=-38
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-4x=6y-38
Add 6y to both sides of the equation.
x=-\frac{1}{4}\left(6y-38\right)
Divide both sides by -4.
x=-\frac{3}{2}y+\frac{19}{2}
Multiply -\frac{1}{4} times 6y-38.
10\left(-\frac{3}{2}y+\frac{19}{2}\right)-2y=44
Substitute \frac{-3y+19}{2} for x in the other equation, 10x-2y=44.
-15y+95-2y=44
Multiply 10 times \frac{-3y+19}{2}.
-17y+95=44
Add -15y to -2y.
-17y=-51
Subtract 95 from both sides of the equation.
y=3
Divide both sides by -17.
x=-\frac{3}{2}\times 3+\frac{19}{2}
Substitute 3 for y in x=-\frac{3}{2}y+\frac{19}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-9+19}{2}
Multiply -\frac{3}{2} times 3.
x=5
Add \frac{19}{2} to -\frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=3
The system is now solved.
40-2x-y-2x=5y+2
Consider the first equation. Subtract 2x from both sides.
40-4x-y=5y+2
Combine -2x and -2x to get -4x.
40-4x-y-5y=2
Subtract 5y from both sides.
40-4x-6y=2
Combine -y and -5y to get -6y.
-4x-6y=2-40
Subtract 40 from both sides.
-4x-6y=-38
Subtract 40 from 2 to get -38.
8x-3y-4+2x=40-y
Consider the second equation. Add 2x to both sides.
10x-3y-4=40-y
Combine 8x and 2x to get 10x.
10x-3y-4+y=40
Add y to both sides.
10x-2y-4=40
Combine -3y and y to get -2y.
10x-2y=40+4
Add 4 to both sides.
10x-2y=44
Add 40 and 4 to get 44.
-4x-6y=-38,10x-2y=44
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-38\\44\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right))\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right))\left(\begin{matrix}-38\\44\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right))\left(\begin{matrix}-38\\44\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-6\\10&-2\end{matrix}\right))\left(\begin{matrix}-38\\44\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-4\left(-2\right)-\left(-6\times 10\right)}&-\frac{-6}{-4\left(-2\right)-\left(-6\times 10\right)}\\-\frac{10}{-4\left(-2\right)-\left(-6\times 10\right)}&-\frac{4}{-4\left(-2\right)-\left(-6\times 10\right)}\end{matrix}\right)\left(\begin{matrix}-38\\44\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{34}&\frac{3}{34}\\-\frac{5}{34}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-38\\44\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{34}\left(-38\right)+\frac{3}{34}\times 44\\-\frac{5}{34}\left(-38\right)-\frac{1}{17}\times 44\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Do the arithmetic.
x=5,y=3
Extract the matrix elements x and y.
40-2x-y-2x=5y+2
Consider the first equation. Subtract 2x from both sides.
40-4x-y=5y+2
Combine -2x and -2x to get -4x.
40-4x-y-5y=2
Subtract 5y from both sides.
40-4x-6y=2
Combine -y and -5y to get -6y.
-4x-6y=2-40
Subtract 40 from both sides.
-4x-6y=-38
Subtract 40 from 2 to get -38.
8x-3y-4+2x=40-y
Consider the second equation. Add 2x to both sides.
10x-3y-4=40-y
Combine 8x and 2x to get 10x.
10x-3y-4+y=40
Add y to both sides.
10x-2y-4=40
Combine -3y and y to get -2y.
10x-2y=40+4
Add 4 to both sides.
10x-2y=44
Add 40 and 4 to get 44.
-4x-6y=-38,10x-2y=44
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\left(-4\right)x+10\left(-6\right)y=10\left(-38\right),-4\times 10x-4\left(-2\right)y=-4\times 44
To make -4x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by -4.
-40x-60y=-380,-40x+8y=-176
Simplify.
-40x+40x-60y-8y=-380+176
Subtract -40x+8y=-176 from -40x-60y=-380 by subtracting like terms on each side of the equal sign.
-60y-8y=-380+176
Add -40x to 40x. Terms -40x and 40x cancel out, leaving an equation with only one variable that can be solved.
-68y=-380+176
Add -60y to -8y.
-68y=-204
Add -380 to 176.
y=3
Divide both sides by -68.
10x-2\times 3=44
Substitute 3 for y in 10x-2y=44. Because the resulting equation contains only one variable, you can solve for x directly.
10x-6=44
Multiply -2 times 3.
10x=50
Add 6 to both sides of the equation.
x=5
Divide both sides by 10.
x=5,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}