Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=-2+4x_{1}+2x_{2}
Solve 4x_{1}+2x_{2}-x_{3}=2 for x_{3}.
3x_{1}-x_{2}+2\left(-2+4x_{1}+2x_{2}\right)=10
Substitute -2+4x_{1}+2x_{2} for x_{3} in the equation 3x_{1}-x_{2}+2x_{3}=10.
x_{2}=-\frac{11}{3}x_{1}+\frac{14}{3} x_{1}=-\frac{1}{11}x_{2}+\frac{8}{11}
Solve the second equation for x_{2} and the third equation for x_{1}.
x_{1}=-\frac{1}{11}\left(-\frac{11}{3}x_{1}+\frac{14}{3}\right)+\frac{8}{11}
Substitute -\frac{11}{3}x_{1}+\frac{14}{3} for x_{2} in the equation x_{1}=-\frac{1}{11}x_{2}+\frac{8}{11}.
x_{1}=\frac{5}{11}
Solve x_{1}=-\frac{1}{11}\left(-\frac{11}{3}x_{1}+\frac{14}{3}\right)+\frac{8}{11} for x_{1}.
x_{2}=-\frac{11}{3}\times \frac{5}{11}+\frac{14}{3}
Substitute \frac{5}{11} for x_{1} in the equation x_{2}=-\frac{11}{3}x_{1}+\frac{14}{3}.
x_{2}=3
Calculate x_{2} from x_{2}=-\frac{11}{3}\times \frac{5}{11}+\frac{14}{3}.
x_{3}=-2+4\times \frac{5}{11}+2\times 3
Substitute 3 for x_{2} and \frac{5}{11} for x_{1} in the equation x_{3}=-2+4x_{1}+2x_{2}.
x_{3}=\frac{64}{11}
Calculate x_{3} from x_{3}=-2+4\times \frac{5}{11}+2\times 3.
x_{1}=\frac{5}{11} x_{2}=3 x_{3}=\frac{64}{11}
The system is now solved.