\left\{ \begin{array} { l } { 4 x - 3 y = 0 } \\ { x ^ { 2 } + y ^ { 2 } = 1 } \end{array} \right.
Solve for x, y
x=-\frac{3}{5}=-0.6\text{, }y=-\frac{4}{5}=-0.8
x=\frac{3}{5}=0.6\text{, }y=\frac{4}{5}=0.8
Graph
Share
Copied to clipboard
4x-3y=0,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-3y=0
Solve 4x-3y=0 for x by isolating x on the left hand side of the equal sign.
4x=3y
Subtract -3y from both sides of the equation.
x=\frac{3}{4}y
Divide both sides by 4.
y^{2}+\left(\frac{3}{4}y\right)^{2}=1
Substitute \frac{3}{4}y for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{9}{16}y^{2}=1
Square \frac{3}{4}y.
\frac{25}{16}y^{2}=1
Add y^{2} to \frac{9}{16}y^{2}.
\frac{25}{16}y^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{25}{16}\left(-1\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{3}{4}\right)^{2} for a, 1\times 0\times \frac{3}{4}\times 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{25}{16}\left(-1\right)}}{2\times \frac{25}{16}}
Square 1\times 0\times \frac{3}{4}\times 2.
y=\frac{0±\sqrt{-\frac{25}{4}\left(-1\right)}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=\frac{0±\sqrt{\frac{25}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -1.
y=\frac{0±\frac{5}{2}}{2\times \frac{25}{16}}
Take the square root of \frac{25}{4}.
y=\frac{0±\frac{5}{2}}{\frac{25}{8}}
Multiply 2 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=\frac{4}{5}
Now solve the equation y=\frac{0±\frac{5}{2}}{\frac{25}{8}} when ± is plus.
y=-\frac{4}{5}
Now solve the equation y=\frac{0±\frac{5}{2}}{\frac{25}{8}} when ± is minus.
x=\frac{3}{4}\times \frac{4}{5}
There are two solutions for y: \frac{4}{5} and -\frac{4}{5}. Substitute \frac{4}{5} for y in the equation x=\frac{3}{4}y to find the corresponding solution for x that satisfies both equations.
x=\frac{3}{5}
Multiply \frac{3}{4} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{4}\left(-\frac{4}{5}\right)
Now substitute -\frac{4}{5} for y in the equation x=\frac{3}{4}y and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{3}{5}
Multiply \frac{3}{4} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{5},y=\frac{4}{5}\text{ or }x=-\frac{3}{5},y=-\frac{4}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}