\left\{ \begin{array} { l } { 4 x - 10 - 10 a - 3 = 0 } \\ { 10 - 2 x + 10 a + y = 0 } \end{array} \right.
Solve for x, y
x=\frac{5a}{2}+\frac{13}{4}
y=-5a-\frac{7}{2}
Graph
Share
Copied to clipboard
4x-10a-13=0,-2x+y+10a+10=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-10a-13=0
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
4x=10a+13
Subtract -13-10a from both sides of the equation.
x=\frac{5a}{2}+\frac{13}{4}
Divide both sides by 4.
-2\left(\frac{5a}{2}+\frac{13}{4}\right)+y+10a+10=0
Substitute \frac{13}{4}+\frac{5a}{2} for x in the other equation, -2x+y+10a+10=0.
-5a-\frac{13}{2}+y+10a+10=0
Multiply -2 times \frac{13}{4}+\frac{5a}{2}.
y+5a+\frac{7}{2}=0
Add -\frac{13}{2}-5a to 10+10a.
y=-5a-\frac{7}{2}
Subtract \frac{7}{2}+5a from both sides of the equation.
x=\frac{5a}{2}+\frac{13}{4},y=-5a-\frac{7}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}