\left\{ \begin{array} { l } { 4 x + 8 y = 16 } \\ { 2 ( x + 2 y ) + 2 y = 16 } \end{array} \right.
Solve for x, y
x=-4
y=4
Graph
Share
Copied to clipboard
2x+4y+2y=16
Consider the second equation. Use the distributive property to multiply 2 by x+2y.
2x+6y=16
Combine 4y and 2y to get 6y.
4x+8y=16,2x+6y=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+8y=16
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-8y+16
Subtract 8y from both sides of the equation.
x=\frac{1}{4}\left(-8y+16\right)
Divide both sides by 4.
x=-2y+4
Multiply \frac{1}{4} times -8y+16.
2\left(-2y+4\right)+6y=16
Substitute -2y+4 for x in the other equation, 2x+6y=16.
-4y+8+6y=16
Multiply 2 times -2y+4.
2y+8=16
Add -4y to 6y.
2y=8
Subtract 8 from both sides of the equation.
y=4
Divide both sides by 2.
x=-2\times 4+4
Substitute 4 for y in x=-2y+4. Because the resulting equation contains only one variable, you can solve for x directly.
x=-8+4
Multiply -2 times 4.
x=-4
Add 4 to -8.
x=-4,y=4
The system is now solved.
2x+4y+2y=16
Consider the second equation. Use the distributive property to multiply 2 by x+2y.
2x+6y=16
Combine 4y and 2y to get 6y.
4x+8y=16,2x+6y=16
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&8\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\16\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&8\\2&6\end{matrix}\right))\left(\begin{matrix}4&8\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&6\end{matrix}\right))\left(\begin{matrix}16\\16\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&8\\2&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&6\end{matrix}\right))\left(\begin{matrix}16\\16\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&6\end{matrix}\right))\left(\begin{matrix}16\\16\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-8\times 2}&-\frac{8}{4\times 6-8\times 2}\\-\frac{2}{4\times 6-8\times 2}&\frac{4}{4\times 6-8\times 2}\end{matrix}\right)\left(\begin{matrix}16\\16\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-1\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}16\\16\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 16-16\\-\frac{1}{4}\times 16+\frac{1}{2}\times 16\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\4\end{matrix}\right)
Do the arithmetic.
x=-4,y=4
Extract the matrix elements x and y.
2x+4y+2y=16
Consider the second equation. Use the distributive property to multiply 2 by x+2y.
2x+6y=16
Combine 4y and 2y to get 6y.
4x+8y=16,2x+6y=16
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 4x+2\times 8y=2\times 16,4\times 2x+4\times 6y=4\times 16
To make 4x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 4.
8x+16y=32,8x+24y=64
Simplify.
8x-8x+16y-24y=32-64
Subtract 8x+24y=64 from 8x+16y=32 by subtracting like terms on each side of the equal sign.
16y-24y=32-64
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
-8y=32-64
Add 16y to -24y.
-8y=-32
Add 32 to -64.
y=4
Divide both sides by -8.
2x+6\times 4=16
Substitute 4 for y in 2x+6y=16. Because the resulting equation contains only one variable, you can solve for x directly.
2x+24=16
Multiply 6 times 4.
2x=-8
Subtract 24 from both sides of the equation.
x=-4
Divide both sides by 2.
x=-4,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}