\left\{ \begin{array} { l } { 4 x + 6 y + z = - 52 } \\ { x + 5 y + z = - 26 } \\ { 8 x + 4 y + z = - 80 } \end{array} \right.
Solve for x, y, z
x=-8
y=-2
z=-8
Share
Copied to clipboard
z=-52-4x-6y
Solve 4x+6y+z=-52 for z.
x+5y-52-4x-6y=-26 8x+4y-52-4x-6y=-80
Substitute -52-4x-6y for z in the second and third equation.
y=-3x-26 x=-7+\frac{1}{2}y
Solve these equations for y and x respectively.
x=-7+\frac{1}{2}\left(-3x-26\right)
Substitute -3x-26 for y in the equation x=-7+\frac{1}{2}y.
x=-8
Solve x=-7+\frac{1}{2}\left(-3x-26\right) for x.
y=-3\left(-8\right)-26
Substitute -8 for x in the equation y=-3x-26.
y=-2
Calculate y from y=-3\left(-8\right)-26.
z=-52-4\left(-8\right)-6\left(-2\right)
Substitute -2 for y and -8 for x in the equation z=-52-4x-6y.
z=-8
Calculate z from z=-52-4\left(-8\right)-6\left(-2\right).
x=-8 y=-2 z=-8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}