\left\{ \begin{array} { l } { 4 x + 5 z = - 18 } \\ { - 4 x + 2 y = 8 } \\ { - x = 10 } \end{array} \right.
Solve for x, z, y
x=-10
y=-16
z = \frac{22}{5} = 4\frac{2}{5} = 4.4
Share
Copied to clipboard
x=-10
Consider the third equation. Divide both sides by -1.
4\left(-10\right)+5z=-18
Consider the first equation. Insert the known values of variables into the equation.
-40+5z=-18
Multiply 4 and -10 to get -40.
5z=-18+40
Add 40 to both sides.
5z=22
Add -18 and 40 to get 22.
z=\frac{22}{5}
Divide both sides by 5.
-4\left(-10\right)+2y=8
Consider the second equation. Insert the known values of variables into the equation.
40+2y=8
Multiply -4 and -10 to get 40.
2y=8-40
Subtract 40 from both sides.
2y=-32
Subtract 40 from 8 to get -32.
y=\frac{-32}{2}
Divide both sides by 2.
y=-16
Divide -32 by 2 to get -16.
x=-10 z=\frac{22}{5} y=-16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}