\left\{ \begin{array} { l } { 4 x + 3 y = 300 } \\ { x + 2 y = 150 } \end{array} \right.
Solve for x, y
x=30
y=60
Graph
Share
Copied to clipboard
4x+3y=300,x+2y=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-3y+300
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+300\right)
Divide both sides by 4.
x=-\frac{3}{4}y+75
Multiply \frac{1}{4} times -3y+300.
-\frac{3}{4}y+75+2y=150
Substitute -\frac{3y}{4}+75 for x in the other equation, x+2y=150.
\frac{5}{4}y+75=150
Add -\frac{3y}{4} to 2y.
\frac{5}{4}y=75
Subtract 75 from both sides of the equation.
y=60
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{4}\times 60+75
Substitute 60 for y in x=-\frac{3}{4}y+75. Because the resulting equation contains only one variable, you can solve for x directly.
x=-45+75
Multiply -\frac{3}{4} times 60.
x=30
Add 75 to -45.
x=30,y=60
The system is now solved.
4x+3y=300,x+2y=150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\1&2\end{matrix}\right))\left(\begin{matrix}4&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&2\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&2\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&2\end{matrix}\right))\left(\begin{matrix}300\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-3}&-\frac{3}{4\times 2-3}\\-\frac{1}{4\times 2-3}&\frac{4}{4\times 2-3}\end{matrix}\right)\left(\begin{matrix}300\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{3}{5}\\-\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}300\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 300-\frac{3}{5}\times 150\\-\frac{1}{5}\times 300+\frac{4}{5}\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\60\end{matrix}\right)
Do the arithmetic.
x=30,y=60
Extract the matrix elements x and y.
4x+3y=300,x+2y=150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+3y=300,4x+4\times 2y=4\times 150
To make 4x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 4.
4x+3y=300,4x+8y=600
Simplify.
4x-4x+3y-8y=300-600
Subtract 4x+8y=600 from 4x+3y=300 by subtracting like terms on each side of the equal sign.
3y-8y=300-600
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-5y=300-600
Add 3y to -8y.
-5y=-300
Add 300 to -600.
y=60
Divide both sides by -5.
x+2\times 60=150
Substitute 60 for y in x+2y=150. Because the resulting equation contains only one variable, you can solve for x directly.
x+120=150
Multiply 2 times 60.
x=30
Subtract 120 from both sides of the equation.
x=30,y=60
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}