Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+3y=-\frac{25}{13},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=-\frac{25}{13}
Solve 4x+3y=-\frac{25}{13} for x by isolating x on the left hand side of the equal sign.
4x=-3y-\frac{25}{13}
Subtract 3y from both sides of the equation.
x=-\frac{3}{4}y-\frac{25}{52}
Divide both sides by 4.
y^{2}+\left(-\frac{3}{4}y-\frac{25}{52}\right)^{2}=1
Substitute -\frac{3}{4}y-\frac{25}{52} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{9}{16}y^{2}+\frac{75}{104}y+\frac{625}{2704}=1
Square -\frac{3}{4}y-\frac{25}{52}.
\frac{25}{16}y^{2}+\frac{75}{104}y+\frac{625}{2704}=1
Add y^{2} to \frac{9}{16}y^{2}.
\frac{25}{16}y^{2}+\frac{75}{104}y-\frac{2079}{2704}=0
Subtract 1 from both sides of the equation.
y=\frac{-\frac{75}{104}±\sqrt{\left(\frac{75}{104}\right)^{2}-4\times \frac{25}{16}\left(-\frac{2079}{2704}\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{3}{4}\right)^{2} for a, 1\left(-\frac{25}{52}\right)\left(-\frac{3}{4}\right)\times 2 for b, and -\frac{2079}{2704} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{75}{104}±\sqrt{\frac{5625}{10816}-4\times \frac{25}{16}\left(-\frac{2079}{2704}\right)}}{2\times \frac{25}{16}}
Square 1\left(-\frac{25}{52}\right)\left(-\frac{3}{4}\right)\times 2.
y=\frac{-\frac{75}{104}±\sqrt{\frac{5625}{10816}-\frac{25}{4}\left(-\frac{2079}{2704}\right)}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\left(-\frac{3}{4}\right)^{2}.
y=\frac{-\frac{75}{104}±\sqrt{\frac{5625+51975}{10816}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -\frac{2079}{2704} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{75}{104}±\sqrt{\frac{900}{169}}}{2\times \frac{25}{16}}
Add \frac{5625}{10816} to \frac{51975}{10816} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{75}{104}±\frac{30}{13}}{2\times \frac{25}{16}}
Take the square root of \frac{900}{169}.
y=\frac{-\frac{75}{104}±\frac{30}{13}}{\frac{25}{8}}
Multiply 2 times 1+1\left(-\frac{3}{4}\right)^{2}.
y=\frac{\frac{165}{104}}{\frac{25}{8}}
Now solve the equation y=\frac{-\frac{75}{104}±\frac{30}{13}}{\frac{25}{8}} when ± is plus. Add -\frac{75}{104} to \frac{30}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{33}{65}
Divide \frac{165}{104} by \frac{25}{8} by multiplying \frac{165}{104} by the reciprocal of \frac{25}{8}.
y=-\frac{\frac{315}{104}}{\frac{25}{8}}
Now solve the equation y=\frac{-\frac{75}{104}±\frac{30}{13}}{\frac{25}{8}} when ± is minus. Subtract \frac{30}{13} from -\frac{75}{104} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{63}{65}
Divide -\frac{315}{104} by \frac{25}{8} by multiplying -\frac{315}{104} by the reciprocal of \frac{25}{8}.
x=-\frac{3}{4}\times \frac{33}{65}-\frac{25}{52}
There are two solutions for y: \frac{33}{65} and -\frac{63}{65}. Substitute \frac{33}{65} for y in the equation x=-\frac{3}{4}y-\frac{25}{52} to find the corresponding solution for x that satisfies both equations.
x=-\frac{99}{260}-\frac{25}{52}
Multiply -\frac{3}{4} times \frac{33}{65} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{56}{65}
Add -\frac{3}{4}\times \frac{33}{65} to -\frac{25}{52}.
x=-\frac{3}{4}\left(-\frac{63}{65}\right)-\frac{25}{52}
Now substitute -\frac{63}{65} for y in the equation x=-\frac{3}{4}y-\frac{25}{52} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{189}{260}-\frac{25}{52}
Multiply -\frac{3}{4} times -\frac{63}{65} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{16}{65}
Add -\frac{63}{65}\left(-\frac{3}{4}\right) to -\frac{25}{52}.
x=-\frac{56}{65},y=\frac{33}{65}\text{ or }x=\frac{16}{65},y=-\frac{63}{65}
The system is now solved.