\left\{ \begin{array} { l } { 4 x + 3 y + 3 z = 350 } \\ { 4 x + 2 y + 5 z = 360 } \\ { 8 x + 8 y + 10 z = 840 } \end{array} \right.
Solve for x, y, z
x=50
y=30
z=20
Share
Copied to clipboard
x=-\frac{3}{4}y-\frac{3}{4}z+\frac{175}{2}
Solve 4x+3y+3z=350 for x.
4\left(-\frac{3}{4}y-\frac{3}{4}z+\frac{175}{2}\right)+2y+5z=360 8\left(-\frac{3}{4}y-\frac{3}{4}z+\frac{175}{2}\right)+8y+10z=840
Substitute -\frac{3}{4}y-\frac{3}{4}z+\frac{175}{2} for x in the second and third equation.
y=-10+2z z=35-\frac{1}{2}y
Solve these equations for y and z respectively.
z=35-\frac{1}{2}\left(-10+2z\right)
Substitute -10+2z for y in the equation z=35-\frac{1}{2}y.
z=20
Solve z=35-\frac{1}{2}\left(-10+2z\right) for z.
y=-10+2\times 20
Substitute 20 for z in the equation y=-10+2z.
y=30
Calculate y from y=-10+2\times 20.
x=-\frac{3}{4}\times 30-\frac{3}{4}\times 20+\frac{175}{2}
Substitute 30 for y and 20 for z in the equation x=-\frac{3}{4}y-\frac{3}{4}z+\frac{175}{2}.
x=50
Calculate x from x=-\frac{3}{4}\times 30-\frac{3}{4}\times 20+\frac{175}{2}.
x=50 y=30 z=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}