\left\{ \begin{array} { l } { 4 x + 18 y = 284 } \\ { 106 x + 40 y + [ 37.16 - 78 ( x + y ) ] = 1.42 } \end{array} \right.
Solve for x, y
x = \frac{253717}{16400} = 15\frac{7717}{16400} \approx 15.47054878
y = \frac{101187}{8200} = 12\frac{2787}{8200} \approx 12.339878049
Graph
Share
Copied to clipboard
106x+40y+37.16-78x-78y=1.42
Consider the second equation. Use the distributive property to multiply -78 by x+y.
28x+40y+37.16-78y=1.42
Combine 106x and -78x to get 28x.
28x-38y+37.16=1.42
Combine 40y and -78y to get -38y.
28x-38y=1.42-37.16
Subtract 37.16 from both sides.
28x-38y=-35.74
Subtract 37.16 from 1.42 to get -35.74.
4x+18y=284,28x-38y=-35.74
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+18y=284
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-18y+284
Subtract 18y from both sides of the equation.
x=\frac{1}{4}\left(-18y+284\right)
Divide both sides by 4.
x=-\frac{9}{2}y+71
Multiply \frac{1}{4} times -18y+284.
28\left(-\frac{9}{2}y+71\right)-38y=-35.74
Substitute -\frac{9y}{2}+71 for x in the other equation, 28x-38y=-35.74.
-126y+1988-38y=-35.74
Multiply 28 times -\frac{9y}{2}+71.
-164y+1988=-35.74
Add -126y to -38y.
-164y=-2023.74
Subtract 1988 from both sides of the equation.
y=\frac{101187}{8200}
Divide both sides by -164.
x=-\frac{9}{2}\times \frac{101187}{8200}+71
Substitute \frac{101187}{8200} for y in x=-\frac{9}{2}y+71. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{910683}{16400}+71
Multiply -\frac{9}{2} times \frac{101187}{8200} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{253717}{16400}
Add 71 to -\frac{910683}{16400}.
x=\frac{253717}{16400},y=\frac{101187}{8200}
The system is now solved.
106x+40y+37.16-78x-78y=1.42
Consider the second equation. Use the distributive property to multiply -78 by x+y.
28x+40y+37.16-78y=1.42
Combine 106x and -78x to get 28x.
28x-38y+37.16=1.42
Combine 40y and -78y to get -38y.
28x-38y=1.42-37.16
Subtract 37.16 from both sides.
28x-38y=-35.74
Subtract 37.16 from 1.42 to get -35.74.
4x+18y=284,28x-38y=-35.74
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&18\\28&-38\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}284\\-35.74\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&18\\28&-38\end{matrix}\right))\left(\begin{matrix}4&18\\28&-38\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&18\\28&-38\end{matrix}\right))\left(\begin{matrix}284\\-35.74\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&18\\28&-38\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&18\\28&-38\end{matrix}\right))\left(\begin{matrix}284\\-35.74\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&18\\28&-38\end{matrix}\right))\left(\begin{matrix}284\\-35.74\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{38}{4\left(-38\right)-18\times 28}&-\frac{18}{4\left(-38\right)-18\times 28}\\-\frac{28}{4\left(-38\right)-18\times 28}&\frac{4}{4\left(-38\right)-18\times 28}\end{matrix}\right)\left(\begin{matrix}284\\-35.74\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{328}&\frac{9}{328}\\\frac{7}{164}&-\frac{1}{164}\end{matrix}\right)\left(\begin{matrix}284\\-35.74\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{328}\times 284+\frac{9}{328}\left(-35.74\right)\\\frac{7}{164}\times 284-\frac{1}{164}\left(-35.74\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{253717}{16400}\\\frac{101187}{8200}\end{matrix}\right)
Do the arithmetic.
x=\frac{253717}{16400},y=\frac{101187}{8200}
Extract the matrix elements x and y.
106x+40y+37.16-78x-78y=1.42
Consider the second equation. Use the distributive property to multiply -78 by x+y.
28x+40y+37.16-78y=1.42
Combine 106x and -78x to get 28x.
28x-38y+37.16=1.42
Combine 40y and -78y to get -38y.
28x-38y=1.42-37.16
Subtract 37.16 from both sides.
28x-38y=-35.74
Subtract 37.16 from 1.42 to get -35.74.
4x+18y=284,28x-38y=-35.74
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
28\times 4x+28\times 18y=28\times 284,4\times 28x+4\left(-38\right)y=4\left(-35.74\right)
To make 4x and 28x equal, multiply all terms on each side of the first equation by 28 and all terms on each side of the second by 4.
112x+504y=7952,112x-152y=-142.96
Simplify.
112x-112x+504y+152y=7952+142.96
Subtract 112x-152y=-142.96 from 112x+504y=7952 by subtracting like terms on each side of the equal sign.
504y+152y=7952+142.96
Add 112x to -112x. Terms 112x and -112x cancel out, leaving an equation with only one variable that can be solved.
656y=7952+142.96
Add 504y to 152y.
656y=8094.96
Add 7952 to 142.96.
y=\frac{101187}{8200}
Divide both sides by 656.
28x-38\times \frac{101187}{8200}=-35.74
Substitute \frac{101187}{8200} for y in 28x-38y=-35.74. Because the resulting equation contains only one variable, you can solve for x directly.
28x-\frac{1922553}{4100}=-35.74
Multiply -38 times \frac{101187}{8200}.
28x=\frac{1776019}{4100}
Add \frac{1922553}{4100} to both sides of the equation.
x=\frac{253717}{16400}
Divide both sides by 28.
x=\frac{253717}{16400},y=\frac{101187}{8200}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}