\left\{ \begin{array} { l } { 4 x + 14 = y } \\ { 5 x - 26 = y } \end{array} \right.
Solve for x, y
x=40
y=174
Graph
Share
Copied to clipboard
4x+14-y=0
Consider the first equation. Subtract y from both sides.
4x-y=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
5x-26-y=0
Consider the second equation. Subtract y from both sides.
5x-y=26
Add 26 to both sides. Anything plus zero gives itself.
4x-y=-14,5x-y=26
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-y=-14
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=y-14
Add y to both sides of the equation.
x=\frac{1}{4}\left(y-14\right)
Divide both sides by 4.
x=\frac{1}{4}y-\frac{7}{2}
Multiply \frac{1}{4} times y-14.
5\left(\frac{1}{4}y-\frac{7}{2}\right)-y=26
Substitute \frac{y}{4}-\frac{7}{2} for x in the other equation, 5x-y=26.
\frac{5}{4}y-\frac{35}{2}-y=26
Multiply 5 times \frac{y}{4}-\frac{7}{2}.
\frac{1}{4}y-\frac{35}{2}=26
Add \frac{5y}{4} to -y.
\frac{1}{4}y=\frac{87}{2}
Add \frac{35}{2} to both sides of the equation.
y=174
Multiply both sides by 4.
x=\frac{1}{4}\times 174-\frac{7}{2}
Substitute 174 for y in x=\frac{1}{4}y-\frac{7}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{87-7}{2}
Multiply \frac{1}{4} times 174.
x=40
Add -\frac{7}{2} to \frac{87}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=40,y=174
The system is now solved.
4x+14-y=0
Consider the first equation. Subtract y from both sides.
4x-y=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
5x-26-y=0
Consider the second equation. Subtract y from both sides.
5x-y=26
Add 26 to both sides. Anything plus zero gives itself.
4x-y=-14,5x-y=26
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\26\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right))\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right))\left(\begin{matrix}-14\\26\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-1\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right))\left(\begin{matrix}-14\\26\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\5&-1\end{matrix}\right))\left(\begin{matrix}-14\\26\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-\left(-5\right)}&-\frac{-1}{4\left(-1\right)-\left(-5\right)}\\-\frac{5}{4\left(-1\right)-\left(-5\right)}&\frac{4}{4\left(-1\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-14\\26\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-5&4\end{matrix}\right)\left(\begin{matrix}-14\\26\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-14\right)+26\\-5\left(-14\right)+4\times 26\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\174\end{matrix}\right)
Do the arithmetic.
x=40,y=174
Extract the matrix elements x and y.
4x+14-y=0
Consider the first equation. Subtract y from both sides.
4x-y=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
5x-26-y=0
Consider the second equation. Subtract y from both sides.
5x-y=26
Add 26 to both sides. Anything plus zero gives itself.
4x-y=-14,5x-y=26
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x-5x-y+y=-14-26
Subtract 5x-y=26 from 4x-y=-14 by subtracting like terms on each side of the equal sign.
4x-5x=-14-26
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
-x=-14-26
Add 4x to -5x.
-x=-40
Add -14 to -26.
x=40
Divide both sides by -1.
5\times 40-y=26
Substitute 40 for x in 5x-y=26. Because the resulting equation contains only one variable, you can solve for y directly.
200-y=26
Multiply 5 times 40.
-y=-174
Subtract 200 from both sides of the equation.
y=174
Divide both sides by -1.
x=40,y=174
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}