\left\{ \begin{array} { l } { 4 k + b = 0 } \\ { b = 4 } \end{array} \right.
Solve for k, b
k=-1
b=4
Quiz
5 problems similar to:
\left\{ \begin{array} { l } { 4 k + b = 0 } \\ { b = 4 } \end{array} \right.
Share
Copied to clipboard
4k+4=0
Consider the first equation. Insert the known values of variables into the equation.
4k=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
k=\frac{-4}{4}
Divide both sides by 4.
k=-1
Divide -4 by 4 to get -1.
k=-1 b=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}