Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

4a+15b=16,15a+71b=73
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4a+15b=16
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
4a=-15b+16
Subtract 15b from both sides of the equation.
a=\frac{1}{4}\left(-15b+16\right)
Divide both sides by 4.
a=-\frac{15}{4}b+4
Multiply \frac{1}{4} times -15b+16.
15\left(-\frac{15}{4}b+4\right)+71b=73
Substitute -\frac{15b}{4}+4 for a in the other equation, 15a+71b=73.
-\frac{225}{4}b+60+71b=73
Multiply 15 times -\frac{15b}{4}+4.
\frac{59}{4}b+60=73
Add -\frac{225b}{4} to 71b.
\frac{59}{4}b=13
Subtract 60 from both sides of the equation.
b=\frac{52}{59}
Divide both sides of the equation by \frac{59}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{15}{4}\times \frac{52}{59}+4
Substitute \frac{52}{59} for b in a=-\frac{15}{4}b+4. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{195}{59}+4
Multiply -\frac{15}{4} times \frac{52}{59} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{41}{59}
Add 4 to -\frac{195}{59}.
a=\frac{41}{59},b=\frac{52}{59}
The system is now solved.
4a+15b=16,15a+71b=73
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&15\\15&71\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}16\\73\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&15\\15&71\end{matrix}\right))\left(\begin{matrix}4&15\\15&71\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&15\\15&71\end{matrix}\right))\left(\begin{matrix}16\\73\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&15\\15&71\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&15\\15&71\end{matrix}\right))\left(\begin{matrix}16\\73\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&15\\15&71\end{matrix}\right))\left(\begin{matrix}16\\73\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{71}{4\times 71-15\times 15}&-\frac{15}{4\times 71-15\times 15}\\-\frac{15}{4\times 71-15\times 15}&\frac{4}{4\times 71-15\times 15}\end{matrix}\right)\left(\begin{matrix}16\\73\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{71}{59}&-\frac{15}{59}\\-\frac{15}{59}&\frac{4}{59}\end{matrix}\right)\left(\begin{matrix}16\\73\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{71}{59}\times 16-\frac{15}{59}\times 73\\-\frac{15}{59}\times 16+\frac{4}{59}\times 73\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{41}{59}\\\frac{52}{59}\end{matrix}\right)
Do the arithmetic.
a=\frac{41}{59},b=\frac{52}{59}
Extract the matrix elements a and b.
4a+15b=16,15a+71b=73
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15\times 4a+15\times 15b=15\times 16,4\times 15a+4\times 71b=4\times 73
To make 4a and 15a equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 4.
60a+225b=240,60a+284b=292
Simplify.
60a-60a+225b-284b=240-292
Subtract 60a+284b=292 from 60a+225b=240 by subtracting like terms on each side of the equal sign.
225b-284b=240-292
Add 60a to -60a. Terms 60a and -60a cancel out, leaving an equation with only one variable that can be solved.
-59b=240-292
Add 225b to -284b.
-59b=-52
Add 240 to -292.
b=\frac{52}{59}
Divide both sides by -59.
15a+71\times \frac{52}{59}=73
Substitute \frac{52}{59} for b in 15a+71b=73. Because the resulting equation contains only one variable, you can solve for a directly.
15a+\frac{3692}{59}=73
Multiply 71 times \frac{52}{59}.
15a=\frac{615}{59}
Subtract \frac{3692}{59} from both sides of the equation.
a=\frac{41}{59}
Divide both sides by 15.
a=\frac{41}{59},b=\frac{52}{59}
The system is now solved.