\left\{ \begin{array} { l } { 4 ( x - 1 ) + 3 ( y + 2 ) = 4 } \\ { - 5 ( x - 2 ) - 4 ( y - 1 ) = 13 } \end{array} \right.
Solve for x, y
x=5
y=-6
Graph
Share
Copied to clipboard
4\left(x-1\right)+3\left(y+2\right)=4,-5\left(x-2\right)-4\left(y-1\right)=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4\left(x-1\right)+3\left(y+2\right)=4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x-4+3\left(y+2\right)=4
Multiply 4 times x-1.
4x-4+3y+6=4
Multiply 3 times y+2.
4x+3y+2=4
Add -4 to 6.
4x+3y=2
Subtract 2 from both sides of the equation.
4x=-3y+2
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+2\right)
Divide both sides by 4.
x=-\frac{3}{4}y+\frac{1}{2}
Multiply \frac{1}{4} times -3y+2.
-5\left(-\frac{3}{4}y+\frac{1}{2}-2\right)-4\left(y-1\right)=13
Substitute -\frac{3y}{4}+\frac{1}{2} for x in the other equation, -5\left(x-2\right)-4\left(y-1\right)=13.
-5\left(-\frac{3}{4}y-\frac{3}{2}\right)-4\left(y-1\right)=13
Add \frac{1}{2} to -2.
\frac{15}{4}y+\frac{15}{2}-4\left(y-1\right)=13
Multiply -5 times -\frac{3y}{4}-\frac{3}{2}.
\frac{15}{4}y+\frac{15}{2}-4y+4=13
Multiply -4 times y-1.
-\frac{1}{4}y+\frac{15}{2}+4=13
Add \frac{15y}{4} to -4y.
-\frac{1}{4}y+\frac{23}{2}=13
Add \frac{15}{2} to 4.
-\frac{1}{4}y=\frac{3}{2}
Subtract \frac{23}{2} from both sides of the equation.
y=-6
Multiply both sides by -4.
x=-\frac{3}{4}\left(-6\right)+\frac{1}{2}
Substitute -6 for y in x=-\frac{3}{4}y+\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{9+1}{2}
Multiply -\frac{3}{4} times -6.
x=5
Add \frac{1}{2} to \frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=-6
The system is now solved.
4\left(x-1\right)+3\left(y+2\right)=4,-5\left(x-2\right)-4\left(y-1\right)=13
Put the equations in standard form and then use matrices to solve the system of equations.
4\left(x-1\right)+3\left(y+2\right)=4
Simplify the first equation to put it in standard form.
4x-4+3\left(y+2\right)=4
Multiply 4 times x-1.
4x-4+3y+6=4
Multiply 3 times y+2.
4x+3y+2=4
Add -4 to 6.
4x+3y=2
Subtract 2 from both sides of the equation.
-5\left(x-2\right)-4\left(y-1\right)=13
Simplify the second equation to put it in standard form.
-5x+10-4\left(y-1\right)=13
Multiply -5 times x-2.
-5x+10-4y+4=13
Multiply -4 times y-1.
-5x-4y+14=13
Add 10 to 4.
-5x-4y=-1
Subtract 14 from both sides of the equation.
\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right))\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right))\left(\begin{matrix}2\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\-5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right))\left(\begin{matrix}2\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right))\left(\begin{matrix}2\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\left(-5\right)}&-\frac{3}{4\left(-4\right)-3\left(-5\right)}\\-\frac{-5}{4\left(-4\right)-3\left(-5\right)}&\frac{4}{4\left(-4\right)-3\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}2\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&3\\-5&-4\end{matrix}\right)\left(\begin{matrix}2\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2+3\left(-1\right)\\-5\times 2-4\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-6\end{matrix}\right)
Do the arithmetic.
x=5,y=-6
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}