Skip to main content
Solve for a, k
Tick mark Image

Similar Problems from Web Search

Share

2a+k=4
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a=k-1
Consider the second equation. Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
4a-k=-1
Subtract k from both sides.
2a+k=4,4a-k=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+k=4
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-k+4
Subtract k from both sides of the equation.
a=\frac{1}{2}\left(-k+4\right)
Divide both sides by 2.
a=-\frac{1}{2}k+2
Multiply \frac{1}{2} times -k+4.
4\left(-\frac{1}{2}k+2\right)-k=-1
Substitute 2-\frac{k}{2} for a in the other equation, 4a-k=-1.
-2k+8-k=-1
Multiply 4 times 2-\frac{k}{2}.
-3k+8=-1
Add -2k to -k.
-3k=-9
Subtract 8 from both sides of the equation.
k=3
Divide both sides by -3.
a=-\frac{1}{2}\times 3+2
Substitute 3 for k in a=-\frac{1}{2}k+2. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{3}{2}+2
Multiply -\frac{1}{2} times 3.
a=\frac{1}{2}
Add 2 to -\frac{3}{2}.
a=\frac{1}{2},k=3
The system is now solved.
2a+k=4
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a=k-1
Consider the second equation. Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
4a-k=-1
Subtract k from both sides.
2a+k=4,4a-k=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\k\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 4+\frac{1}{6}\left(-1\right)\\\frac{2}{3}\times 4-\frac{1}{3}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\k\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\3\end{matrix}\right)
Do the arithmetic.
a=\frac{1}{2},k=3
Extract the matrix elements a and k.
2a+k=4
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a=k-1
Consider the second equation. Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
4a-k=-1
Subtract k from both sides.
2a+k=4,4a-k=-1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 2a+4k=4\times 4,2\times 4a+2\left(-1\right)k=2\left(-1\right)
To make 2a and 4a equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 2.
8a+4k=16,8a-2k=-2
Simplify.
8a-8a+4k+2k=16+2
Subtract 8a-2k=-2 from 8a+4k=16 by subtracting like terms on each side of the equal sign.
4k+2k=16+2
Add 8a to -8a. Terms 8a and -8a cancel out, leaving an equation with only one variable that can be solved.
6k=16+2
Add 4k to 2k.
6k=18
Add 16 to 2.
k=3
Divide both sides by 6.
4a-3=-1
Substitute 3 for k in 4a-k=-1. Because the resulting equation contains only one variable, you can solve for a directly.
4a=2
Add 3 to both sides of the equation.
a=\frac{1}{2}
Divide both sides by 4.
a=\frac{1}{2},k=3
The system is now solved.