\left\{ \begin{array} { l } { 380 x + 320 y = 380 y + 320 x } \\ { 2300 y + 320 x = 2000 - 180 } \end{array} \right.
Solve for x, y
x=\frac{91}{131}\approx 0.694656489
y=\frac{91}{131}\approx 0.694656489
Graph
Share
Copied to clipboard
380x+320y-380y=320x
Consider the first equation. Subtract 380y from both sides.
380x-60y=320x
Combine 320y and -380y to get -60y.
380x-60y-320x=0
Subtract 320x from both sides.
60x-60y=0
Combine 380x and -320x to get 60x.
2300y+320x=1820
Consider the second equation. Subtract 180 from 2000 to get 1820.
60x-60y=0,320x+2300y=1820
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60x-60y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
60x=60y
Add 60y to both sides of the equation.
x=\frac{1}{60}\times 60y
Divide both sides by 60.
x=y
Multiply \frac{1}{60} times 60y.
320y+2300y=1820
Substitute y for x in the other equation, 320x+2300y=1820.
2620y=1820
Add 320y to 2300y.
y=\frac{91}{131}
Divide both sides by 2620.
x=\frac{91}{131}
Substitute \frac{91}{131} for y in x=y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{91}{131},y=\frac{91}{131}
The system is now solved.
380x+320y-380y=320x
Consider the first equation. Subtract 380y from both sides.
380x-60y=320x
Combine 320y and -380y to get -60y.
380x-60y-320x=0
Subtract 320x from both sides.
60x-60y=0
Combine 380x and -320x to get 60x.
2300y+320x=1820
Consider the second equation. Subtract 180 from 2000 to get 1820.
60x-60y=0,320x+2300y=1820
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1820\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right))\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right))\left(\begin{matrix}0\\1820\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&-60\\320&2300\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right))\left(\begin{matrix}0\\1820\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-60\\320&2300\end{matrix}\right))\left(\begin{matrix}0\\1820\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2300}{60\times 2300-\left(-60\times 320\right)}&-\frac{-60}{60\times 2300-\left(-60\times 320\right)}\\-\frac{320}{60\times 2300-\left(-60\times 320\right)}&\frac{60}{60\times 2300-\left(-60\times 320\right)}\end{matrix}\right)\left(\begin{matrix}0\\1820\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{1572}&\frac{1}{2620}\\-\frac{4}{1965}&\frac{1}{2620}\end{matrix}\right)\left(\begin{matrix}0\\1820\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2620}\times 1820\\\frac{1}{2620}\times 1820\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{91}{131}\\\frac{91}{131}\end{matrix}\right)
Do the arithmetic.
x=\frac{91}{131},y=\frac{91}{131}
Extract the matrix elements x and y.
380x+320y-380y=320x
Consider the first equation. Subtract 380y from both sides.
380x-60y=320x
Combine 320y and -380y to get -60y.
380x-60y-320x=0
Subtract 320x from both sides.
60x-60y=0
Combine 380x and -320x to get 60x.
2300y+320x=1820
Consider the second equation. Subtract 180 from 2000 to get 1820.
60x-60y=0,320x+2300y=1820
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
320\times 60x+320\left(-60\right)y=0,60\times 320x+60\times 2300y=60\times 1820
To make 60x and 320x equal, multiply all terms on each side of the first equation by 320 and all terms on each side of the second by 60.
19200x-19200y=0,19200x+138000y=109200
Simplify.
19200x-19200x-19200y-138000y=-109200
Subtract 19200x+138000y=109200 from 19200x-19200y=0 by subtracting like terms on each side of the equal sign.
-19200y-138000y=-109200
Add 19200x to -19200x. Terms 19200x and -19200x cancel out, leaving an equation with only one variable that can be solved.
-157200y=-109200
Add -19200y to -138000y.
y=\frac{91}{131}
Divide both sides by -157200.
320x+2300\times \frac{91}{131}=1820
Substitute \frac{91}{131} for y in 320x+2300y=1820. Because the resulting equation contains only one variable, you can solve for x directly.
320x+\frac{209300}{131}=1820
Multiply 2300 times \frac{91}{131}.
320x=\frac{29120}{131}
Subtract \frac{209300}{131} from both sides of the equation.
x=\frac{91}{131}
Divide both sides by 320.
x=\frac{91}{131},y=\frac{91}{131}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}