\left\{ \begin{array} { l } { 37 V _ { 1 } + 6 V _ { 2 } = 50 } \\ { V _ { 1 } + V _ { 2 } = 70 } \end{array} \right.
Solve for V_1, V_2
V_{1} = -\frac{370}{31} = -11\frac{29}{31} \approx -11.935483871
V_{2} = \frac{2540}{31} = 81\frac{29}{31} \approx 81.935483871
Share
Copied to clipboard
37V_{1}+6V_{2}=50,V_{1}+V_{2}=70
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
37V_{1}+6V_{2}=50
Choose one of the equations and solve it for V_{1} by isolating V_{1} on the left hand side of the equal sign.
37V_{1}=-6V_{2}+50
Subtract 6V_{2} from both sides of the equation.
V_{1}=\frac{1}{37}\left(-6V_{2}+50\right)
Divide both sides by 37.
V_{1}=-\frac{6}{37}V_{2}+\frac{50}{37}
Multiply \frac{1}{37} times -6V_{2}+50.
-\frac{6}{37}V_{2}+\frac{50}{37}+V_{2}=70
Substitute \frac{-6V_{2}+50}{37} for V_{1} in the other equation, V_{1}+V_{2}=70.
\frac{31}{37}V_{2}+\frac{50}{37}=70
Add -\frac{6V_{2}}{37} to V_{2}.
\frac{31}{37}V_{2}=\frac{2540}{37}
Subtract \frac{50}{37} from both sides of the equation.
V_{2}=\frac{2540}{31}
Divide both sides of the equation by \frac{31}{37}, which is the same as multiplying both sides by the reciprocal of the fraction.
V_{1}=-\frac{6}{37}\times \frac{2540}{31}+\frac{50}{37}
Substitute \frac{2540}{31} for V_{2} in V_{1}=-\frac{6}{37}V_{2}+\frac{50}{37}. Because the resulting equation contains only one variable, you can solve for V_{1} directly.
V_{1}=-\frac{15240}{1147}+\frac{50}{37}
Multiply -\frac{6}{37} times \frac{2540}{31} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
V_{1}=-\frac{370}{31}
Add \frac{50}{37} to -\frac{15240}{1147} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
V_{1}=-\frac{370}{31},V_{2}=\frac{2540}{31}
The system is now solved.
37V_{1}+6V_{2}=50,V_{1}+V_{2}=70
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}37&6\\1&1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}50\\70\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}37&6\\1&1\end{matrix}\right))\left(\begin{matrix}37&6\\1&1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}37&6\\1&1\end{matrix}\right))\left(\begin{matrix}50\\70\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}37&6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}37&6\\1&1\end{matrix}\right))\left(\begin{matrix}50\\70\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}37&6\\1&1\end{matrix}\right))\left(\begin{matrix}50\\70\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{37-6}&-\frac{6}{37-6}\\-\frac{1}{37-6}&\frac{37}{37-6}\end{matrix}\right)\left(\begin{matrix}50\\70\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{31}&-\frac{6}{31}\\-\frac{1}{31}&\frac{37}{31}\end{matrix}\right)\left(\begin{matrix}50\\70\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{31}\times 50-\frac{6}{31}\times 70\\-\frac{1}{31}\times 50+\frac{37}{31}\times 70\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{370}{31}\\\frac{2540}{31}\end{matrix}\right)
Do the arithmetic.
V_{1}=-\frac{370}{31},V_{2}=\frac{2540}{31}
Extract the matrix elements V_{1} and V_{2}.
37V_{1}+6V_{2}=50,V_{1}+V_{2}=70
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
37V_{1}+6V_{2}=50,37V_{1}+37V_{2}=37\times 70
To make 37V_{1} and V_{1} equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 37.
37V_{1}+6V_{2}=50,37V_{1}+37V_{2}=2590
Simplify.
37V_{1}-37V_{1}+6V_{2}-37V_{2}=50-2590
Subtract 37V_{1}+37V_{2}=2590 from 37V_{1}+6V_{2}=50 by subtracting like terms on each side of the equal sign.
6V_{2}-37V_{2}=50-2590
Add 37V_{1} to -37V_{1}. Terms 37V_{1} and -37V_{1} cancel out, leaving an equation with only one variable that can be solved.
-31V_{2}=50-2590
Add 6V_{2} to -37V_{2}.
-31V_{2}=-2540
Add 50 to -2590.
V_{2}=\frac{2540}{31}
Divide both sides by -31.
V_{1}+\frac{2540}{31}=70
Substitute \frac{2540}{31} for V_{2} in V_{1}+V_{2}=70. Because the resulting equation contains only one variable, you can solve for V_{1} directly.
V_{1}=-\frac{370}{31}
Subtract \frac{2540}{31} from both sides of the equation.
V_{1}=-\frac{370}{31},V_{2}=\frac{2540}{31}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}