Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x+210y=3600
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
48x+552y=7920
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30x+210y=3600,48x+552y=7920
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30x+210y=3600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
30x=-210y+3600
Subtract 210y from both sides of the equation.
x=\frac{1}{30}\left(-210y+3600\right)
Divide both sides by 30.
x=-7y+120
Multiply \frac{1}{30} times -210y+3600.
48\left(-7y+120\right)+552y=7920
Substitute -7y+120 for x in the other equation, 48x+552y=7920.
-336y+5760+552y=7920
Multiply 48 times -7y+120.
216y+5760=7920
Add -336y to 552y.
216y=2160
Subtract 5760 from both sides of the equation.
y=10
Divide both sides by 216.
x=-7\times 10+120
Substitute 10 for y in x=-7y+120. Because the resulting equation contains only one variable, you can solve for x directly.
x=-70+120
Multiply -7 times 10.
x=50
Add 120 to -70.
x=50,y=10
The system is now solved.
30x+210y=3600
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
48x+552y=7920
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30x+210y=3600,48x+552y=7920
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&210\\48&552\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\7920\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&210\\48&552\end{matrix}\right))\left(\begin{matrix}30&210\\48&552\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&210\\48&552\end{matrix}\right))\left(\begin{matrix}3600\\7920\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&210\\48&552\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&210\\48&552\end{matrix}\right))\left(\begin{matrix}3600\\7920\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&210\\48&552\end{matrix}\right))\left(\begin{matrix}3600\\7920\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{552}{30\times 552-210\times 48}&-\frac{210}{30\times 552-210\times 48}\\-\frac{48}{30\times 552-210\times 48}&\frac{30}{30\times 552-210\times 48}\end{matrix}\right)\left(\begin{matrix}3600\\7920\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{270}&-\frac{7}{216}\\-\frac{1}{135}&\frac{1}{216}\end{matrix}\right)\left(\begin{matrix}3600\\7920\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{270}\times 3600-\frac{7}{216}\times 7920\\-\frac{1}{135}\times 3600+\frac{1}{216}\times 7920\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\10\end{matrix}\right)
Do the arithmetic.
x=50,y=10
Extract the matrix elements x and y.
30x+210y=3600
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
48x+552y=7920
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30x+210y=3600,48x+552y=7920
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
48\times 30x+48\times 210y=48\times 3600,30\times 48x+30\times 552y=30\times 7920
To make 30x and 48x equal, multiply all terms on each side of the first equation by 48 and all terms on each side of the second by 30.
1440x+10080y=172800,1440x+16560y=237600
Simplify.
1440x-1440x+10080y-16560y=172800-237600
Subtract 1440x+16560y=237600 from 1440x+10080y=172800 by subtracting like terms on each side of the equal sign.
10080y-16560y=172800-237600
Add 1440x to -1440x. Terms 1440x and -1440x cancel out, leaving an equation with only one variable that can be solved.
-6480y=172800-237600
Add 10080y to -16560y.
-6480y=-64800
Add 172800 to -237600.
y=10
Divide both sides by -6480.
48x+552\times 10=7920
Substitute 10 for y in 48x+552y=7920. Because the resulting equation contains only one variable, you can solve for x directly.
48x+5520=7920
Multiply 552 times 10.
48x=2400
Subtract 5520 from both sides of the equation.
x=50
Divide both sides by 48.
x=50,y=10
The system is now solved.